trace element geochemistry
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 179)

H-INDEX

61
(FIVE YEARS 5)

2022 ◽  
Author(s):  
S Matte ◽  
M Constantin ◽  
R Stevenson

The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located between regional metasediments, suggesting a regional tectonic control. Several hypotheses for the origin of the complex have been suggested: crustal contamination of mantle-derived magmas, crustal melting, fluid alteration, metamorphism, and hydrothermal activity. Our objective is to characterize the mineralogical, geochemical, and isotopic composition of the Kipawa complex in order to improve our understanding of the formation and the post-formation processes, and the age of the complex. The complex has been deformed and metamorphosed with evidence of melting-recrystallization textures among REE and Zr rich magmatic and post magmatic minerals. Major and trace element geochemistry obtained by ICP-MS suggest that syenites, granites and monzonite of the complex have within-plate A2 type anorogenic signatures, and our analyses indicate a strong crustal signature based on TIMS whole rock Nd isotopes. We have analyzed zircon grains by SEM, EPMA, ICP-MS and MC-ICP-MS coupled with laser ablation (Lu-Hf). Initial isotopic results also support a strong crustal signature. Taken together, these results suggest that alkaline magmas of the Kipawa complex/deposit could have formed by partial melting of the mantle followed by strong crustal contamination or by melting of metasomatized continental crust. These processes and origins strongly differ compare to most alkaline complexes in the world. Additional TIMS and LA-MC-ICP-MS analyses are planned to investigate whether all lithologies share the same strong crustal signature.


2021 ◽  
Author(s):  
◽  
Vanisha Pullan

<p>The Havre Trough back arc system located behind the Kermadec Arc, in the southwest Pacific, is a classic example of an intra-oceanic back arc system. Subduction driven magmatism is focused at the arc front, and melting in the back arc is accompanied by back arc rifting. This study examines the deep back arc basins of the southern Havre Trough. Compared to the well-studied Kermadec Arc front volcanoes, the back arc basins remain poorly explored, yet are important features in understanding key structural and geochemical dynamics of the subduction system.  The back arc is characterised by areas of deeper basins and constructional cross-arc volcanic edifices, which had previously been attributed to ‘rift regime’ and ‘arc regime’, respectively. In this study, recently acquired multibeam data was used to produce digital terrain maps that show individual basins within the Havre Trough that host a range of different morphological features, such as elongated ridges, nearly-flat basin floors, and small volcanic cones. Lavas dredged from the 10 basins were analysed, eight of which sample the rift regime and two sample the arc regime.  The back arc basin lavas are basalts to basaltic-andesites and show fractionation of olivine + pyroxene ± plagioclase mineral assemblages. Olivine phenocrysts were tested for chemical equilibrium and predominantly show that crystallisation occurred in equilibrium with host melts. However, petrographic features such as dissolution and zoning within plagioclase show evidence of multistage magmatic evolution.  Whole rock trace element geochemistry reveals trace element characteristics typical of volcanic arc lavas, such as enrichments in large ion lithophile elements (LILE) and Pb relative to high field strength elements (HFSE). From west to east, the back arc basin lavas show a decrease in NbN/YbN, consistent with trench perpendicular flow and progressive melt extraction towards the volcanic front. There is also a broad correlation between NbN/YbN and distance along the strike of the subduction zone. This may suggest a component of trench parallel flow of the mantle wedge, with increasing depletion northwards, although further evidence is needed to rule out pre-existing mantle heterogeneity.  Ba/Th values, which trace the addition of slab-derived aqueous fluids, decrease with distance from the arc front. This indicates that the aqueous fluid component becomes less prominent with increasing distance from the arc front. Conversely, the basin lavas exhibit broadly increasing LaN/SmN values with distance from the arc front. As LaN/SmN can be used to trace the deep subduction component, i.e. sediment melt contribution, greater LaN/SmN suggests increasing contribution of a sediment signature away from the arc front. The parameters that measure recycled component flux are comparable between rift and arc regimes, so it is unlikely that increased volatile fluxing leads to the larger concentrations of magmatic activity displayed in arc regimes. Gill volcano (arc regime) has similar to higher NbN/YbN than lavas from adjacent basins, suggesting increased magmatic activity may in part relate to pockets of more fertile mantle. This study shows that back arcs and associated volcanism can be complicated, further research is integral in determining mechanisms for voluminous magmatic activity spread throughout the back arc.</p>


2021 ◽  
Author(s):  
◽  
Vanisha Pullan

<p>The Havre Trough back arc system located behind the Kermadec Arc, in the southwest Pacific, is a classic example of an intra-oceanic back arc system. Subduction driven magmatism is focused at the arc front, and melting in the back arc is accompanied by back arc rifting. This study examines the deep back arc basins of the southern Havre Trough. Compared to the well-studied Kermadec Arc front volcanoes, the back arc basins remain poorly explored, yet are important features in understanding key structural and geochemical dynamics of the subduction system.  The back arc is characterised by areas of deeper basins and constructional cross-arc volcanic edifices, which had previously been attributed to ‘rift regime’ and ‘arc regime’, respectively. In this study, recently acquired multibeam data was used to produce digital terrain maps that show individual basins within the Havre Trough that host a range of different morphological features, such as elongated ridges, nearly-flat basin floors, and small volcanic cones. Lavas dredged from the 10 basins were analysed, eight of which sample the rift regime and two sample the arc regime.  The back arc basin lavas are basalts to basaltic-andesites and show fractionation of olivine + pyroxene ± plagioclase mineral assemblages. Olivine phenocrysts were tested for chemical equilibrium and predominantly show that crystallisation occurred in equilibrium with host melts. However, petrographic features such as dissolution and zoning within plagioclase show evidence of multistage magmatic evolution.  Whole rock trace element geochemistry reveals trace element characteristics typical of volcanic arc lavas, such as enrichments in large ion lithophile elements (LILE) and Pb relative to high field strength elements (HFSE). From west to east, the back arc basin lavas show a decrease in NbN/YbN, consistent with trench perpendicular flow and progressive melt extraction towards the volcanic front. There is also a broad correlation between NbN/YbN and distance along the strike of the subduction zone. This may suggest a component of trench parallel flow of the mantle wedge, with increasing depletion northwards, although further evidence is needed to rule out pre-existing mantle heterogeneity.  Ba/Th values, which trace the addition of slab-derived aqueous fluids, decrease with distance from the arc front. This indicates that the aqueous fluid component becomes less prominent with increasing distance from the arc front. Conversely, the basin lavas exhibit broadly increasing LaN/SmN values with distance from the arc front. As LaN/SmN can be used to trace the deep subduction component, i.e. sediment melt contribution, greater LaN/SmN suggests increasing contribution of a sediment signature away from the arc front. The parameters that measure recycled component flux are comparable between rift and arc regimes, so it is unlikely that increased volatile fluxing leads to the larger concentrations of magmatic activity displayed in arc regimes. Gill volcano (arc regime) has similar to higher NbN/YbN than lavas from adjacent basins, suggesting increased magmatic activity may in part relate to pockets of more fertile mantle. This study shows that back arcs and associated volcanism can be complicated, further research is integral in determining mechanisms for voluminous magmatic activity spread throughout the back arc.</p>


2021 ◽  
Author(s):  
◽  
Alexander Zohrab

<p>The Kermadec Arc-Havre Trough (KAHT) is widely regarded as a classical example of an intra-oceanic arc-back-arc system, where subduction-driven arc magmatism is focused at the Kermadec volcanic arc-front, and magmatism within the Havre Trough back-arc system results from decompression-related melting. In detail, however, the Havre Trough has not been well-studied, and data for very few lavas have been reported.  Recent mapping undertaken in the southern Havre Trough has resulted in the discovery of several prominent submarine stratovolcanoes, Gill Seamount, Rapuhia Seamount and the related Rapuhia Ridge, Yokosuka Seamount, and Giljanes Seamount, situated in the middle of deep rifts and on elevated crustal plateaux. The origin and evolution of these stratovolcanoes is unknown. The first detailed dataset of whole rock major and trace element geochemistry, mineral chemistry, and ⁴⁰Ar/³⁹Ar isotope data, for lavas erupted from these volcanoes is presented here, and used to investigate the processes that drive volcanism in the Havre Trough back-arc.  ⁴⁰Ar/³⁹Ar ages obtained from back-arc stratovolcanoes range from ca. 1167 - 953 ka for Gill Seamount, and ca. 107 - 50 ka for Rapuhia Ridge. These ages overlap with known ages for arc-front lavas, indicating that both back-arc and arc-front volcanism are coeval. These ages are all significantly younger than the inferred initation of Havre Trough rifting ca. 5 - 6 Ma.  Lavas analysed from Gill Seamount and Rapuhia Ridge are basaltic to basaltic-andesitic in whole rock composition and contain a phenocryst assemblage of olivine ± orthopyroxene + clinopyroxene ± plagioclase. Lavas from Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount range from andesitic to dacitic in composition, and have a phenocryst assemblage consisting primarily of plagioclase ± clinopyroxene ± amphibole ± Fe-Ti oxides ± apatite. Variations in mineral assemblages and whole rock compositions of the lavas are consistent with crystal fractionation of their respective phenocryst phases. The more evolved compositions of Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount, all sited on an elevated crustal plateau, are inferred to result from prolonged assimilation + fractional crystallisation (AFC) in the mid- to upper- crust.  Mineral compositions provide additional evidence for fractional crystallisation, and most crystals are inferred to have crystallised in equilibrium with their host melt. However, compositions of some olivine phenocrysts in Gill Seamount and Rapuhia Ridge indicate multiple populations of olivine, suggesting their magmatic systems were open to contributions from secondary processes. Variations in Or content in plagioclase crystals for a given lava suite suggests the sample suites crystallised from melts with different starting K₂O compositions.  Elevated ratios of Nb/Yb in the mafic Gill Seamount and Rapuhia Ridge lavas indicate the back-arc volcanoes and ridges originated from a less depleted mantle than that present underneath the Kermadec volcanic arc-front, likely a consequence of trenchward advection of mantle within a suprasubduction wedge and/or partial melting of a fusible enriched mantle component.   All whole rock samples from these back-arc volcanoes have trace element characteristics that resemble those of typical volcanic arc magmas, indicating that they are variably modified by subducting plate-derived components despite their rear-arc setting. However, the extent of fluid enrichment is less than that at the Kermadec volcanic arc-front. Elevated REE patterns and (La/Sm)N ratios suggest the subduction-component modifying back-arc volcano magmas is dominated by subducting sediment. This sediment component is not consistent with aqueous fluid transfer or bulk mixing, but by the addition of a sediment-derived partial melt with residual accessory phases monazite + zircon + rutile. HFSE/REE fractionated trace element patterns overlap for unmodified basalts from Gill Seamount and Rapuhia Ridge, and Rumble V Ridge back-arc constructional volcanism to the south. This suggests that a similar mechanism triggers constructional back-arc volcanism at both locations in the southern Havre Trough, likely a consequence of thermal anomalies inferred to be present in the mantle wedge (Todd et al. (2011)).</p>


2021 ◽  
Author(s):  
◽  
Alexander Zohrab

<p>The Kermadec Arc-Havre Trough (KAHT) is widely regarded as a classical example of an intra-oceanic arc-back-arc system, where subduction-driven arc magmatism is focused at the Kermadec volcanic arc-front, and magmatism within the Havre Trough back-arc system results from decompression-related melting. In detail, however, the Havre Trough has not been well-studied, and data for very few lavas have been reported.  Recent mapping undertaken in the southern Havre Trough has resulted in the discovery of several prominent submarine stratovolcanoes, Gill Seamount, Rapuhia Seamount and the related Rapuhia Ridge, Yokosuka Seamount, and Giljanes Seamount, situated in the middle of deep rifts and on elevated crustal plateaux. The origin and evolution of these stratovolcanoes is unknown. The first detailed dataset of whole rock major and trace element geochemistry, mineral chemistry, and ⁴⁰Ar/³⁹Ar isotope data, for lavas erupted from these volcanoes is presented here, and used to investigate the processes that drive volcanism in the Havre Trough back-arc.  ⁴⁰Ar/³⁹Ar ages obtained from back-arc stratovolcanoes range from ca. 1167 - 953 ka for Gill Seamount, and ca. 107 - 50 ka for Rapuhia Ridge. These ages overlap with known ages for arc-front lavas, indicating that both back-arc and arc-front volcanism are coeval. These ages are all significantly younger than the inferred initation of Havre Trough rifting ca. 5 - 6 Ma.  Lavas analysed from Gill Seamount and Rapuhia Ridge are basaltic to basaltic-andesitic in whole rock composition and contain a phenocryst assemblage of olivine ± orthopyroxene + clinopyroxene ± plagioclase. Lavas from Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount range from andesitic to dacitic in composition, and have a phenocryst assemblage consisting primarily of plagioclase ± clinopyroxene ± amphibole ± Fe-Ti oxides ± apatite. Variations in mineral assemblages and whole rock compositions of the lavas are consistent with crystal fractionation of their respective phenocryst phases. The more evolved compositions of Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount, all sited on an elevated crustal plateau, are inferred to result from prolonged assimilation + fractional crystallisation (AFC) in the mid- to upper- crust.  Mineral compositions provide additional evidence for fractional crystallisation, and most crystals are inferred to have crystallised in equilibrium with their host melt. However, compositions of some olivine phenocrysts in Gill Seamount and Rapuhia Ridge indicate multiple populations of olivine, suggesting their magmatic systems were open to contributions from secondary processes. Variations in Or content in plagioclase crystals for a given lava suite suggests the sample suites crystallised from melts with different starting K₂O compositions.  Elevated ratios of Nb/Yb in the mafic Gill Seamount and Rapuhia Ridge lavas indicate the back-arc volcanoes and ridges originated from a less depleted mantle than that present underneath the Kermadec volcanic arc-front, likely a consequence of trenchward advection of mantle within a suprasubduction wedge and/or partial melting of a fusible enriched mantle component.   All whole rock samples from these back-arc volcanoes have trace element characteristics that resemble those of typical volcanic arc magmas, indicating that they are variably modified by subducting plate-derived components despite their rear-arc setting. However, the extent of fluid enrichment is less than that at the Kermadec volcanic arc-front. Elevated REE patterns and (La/Sm)N ratios suggest the subduction-component modifying back-arc volcano magmas is dominated by subducting sediment. This sediment component is not consistent with aqueous fluid transfer or bulk mixing, but by the addition of a sediment-derived partial melt with residual accessory phases monazite + zircon + rutile. HFSE/REE fractionated trace element patterns overlap for unmodified basalts from Gill Seamount and Rapuhia Ridge, and Rumble V Ridge back-arc constructional volcanism to the south. This suggests that a similar mechanism triggers constructional back-arc volcanism at both locations in the southern Havre Trough, likely a consequence of thermal anomalies inferred to be present in the mantle wedge (Todd et al. (2011)).</p>


Sign in / Sign up

Export Citation Format

Share Document