Carboniferous high-Mg andesitic and dioritic rocks in the Aqishan-Yamansu belt: Implications for mantle metasomatism and tectonic setting of the Eastern Tianshan

2021 ◽  
pp. 104887
Author(s):  
Liandang Zhao ◽  
Huayong Chen ◽  
Jinsheng Han ◽  
Shuanliang Zhang
2020 ◽  
Vol 47 (3) ◽  
pp. 119-142
Author(s):  
Roger H. Mitchell

Lamproite is a rare ultrapotassic alkaline rock of petrological importance as it is considered to be derived from metasomatized lithospheric mantle, and of economic significance, being the host of major diamond deposits. A review of the nomenclature of lamproite results in the recommendation that members of the lamproite petrological clan be named using mineralogical-genetic classifications to distinguish them from other genetically unrelated potassic alkaline rocks, kimberlite, and diverse lamprophyres. The names “Group 2 kimberlite” and “orangeite” must be abandoned as these rock types are varieties of bona fide lamproite restricted to the Kaapvaal Craton. Lamproites exhibit extreme diversity in their mineralogy which ranges from olivine phlogopite lamproite, through phlogopite leucite lamproite and potassic titanian richterite-diopside lamproite, to leucite sanidine lamproite. Diamondiferous olivine lamproites are hybrid rocks extensively contaminated by mantle-derived xenocrystic olivine. Currently, lamproites are divided into cratonic (e.g. Leucite Hills, USA; Baifen, China) and orogenic (Mediterranean) varieties (e.g. Murcia-Almeria, Spain; Afyon, Turkey; Xungba, Tibet). Each cratonic and orogenic lamproite province differs significantly in tectonic setting and Sr–Nd–Pb–Hf isotopic compositions. Isotopic compositions indicate derivation from enriched mantle sources, having long-term low Sm/Nd and high Rb/Sr ratios, relative to bulk earth and depleted asthenospheric mantle. All lamproites are considered, on the basis of their geochemistry, to be derived from ancient mineralogically complex K–Ti–Ba–REE-rich veins, or metasomes, in the lithospheric mantle with, or without, subsequent contributions from recent asthenospheric or subducted components at the time of genesis. Lamproite primary magmas are considered to be relatively silica-rich (~50–60 wt.% SiO2), MgO-poor (3–12 wt.%), and ultrapotassic (~8–12 wt.% K2O) as exemplified by hyalo-phlogopite lamproites from the Leucite Hills (Wyoming) or Smoky Butte (Montana). Brief descriptions are given of the most important phreatomagmatic diamondiferous lamproite vents. The tectonic processes which lead to partial melting of metasomes, and/or initiation of magmatism, are described for examples of cratonic and orogenic lamproites. As each lamproite province differs with respect to its mineralogy, geochemical evolution, and tectonic setting there is no simple or common petrogenetic model for their genesis. Each province must be considered as the unique expression of the times and vagaries of ancient mantle metasomatism, coupled with diverse and complex partial melting processes, together with mixing of younger asthenospheric and lithospheric material, and, in the case of many orogenic lamproites, with Paleogene to Recent subducted material.


1993 ◽  
Vol 30 (6) ◽  
pp. 1110-1122 ◽  
Author(s):  
G. E. Camiré ◽  
J. N. Ludden ◽  
M. R. La Flèche ◽  
J. -P. Burg

In the northwestern Pontiac Subprovince, metavolcanic rocks are exposed within a metagraywacke sequence that is intruded by metamorphosed mafic dykes. The metavolcanics are Al-undepleted komatiites ([La/Sm]N = 0.3, [Tb/Yb]N = 0.9) and tholeiitic Fe-basalts ([La/Sm]N = 0.8 and [Tb/Yb]N = 0.8). The nearly flat chondrite-normalized distributions of high field strength elements (HFSE), Ti and P, the constant Zr/Y, Nb/Th, Ti/Zr, and Ti/P ratios, and the lack of depletion of HFSE relative to rare-earth elements (REE) in both ultramafic and mafic metavolcanics, imply that crustal assimilation and magma mixing with crustal melts were not significant during differentiation and argue against the presence of subduction-related magmatic components. Contemporaneous volcanism and sedimentation in the northwestern Pontiac Subprovince are unlikely. The metavolcanics do not show any evidence of crustal contamination and likely represent a structurally emplaced, disrupted assemblage, chemically similar to early volcanics of the adjacent southern Abitibi Subprovince.Metamorphosed mafic dykes intruding the metagraywackes are not genetically related to the metavolcanics. The dykes have high CaO, P2O5, K2O, Ba, Rb, and Sr, intermediate Cr and Ni contents, and strongly fractionated REE patterns ([La/Yb]N = 10.8). Normalized to the primitive mantle, they display pronounced negative Nb, Ta, Ti, Zr, and Hf anomalies. These amphibolites are metamorphosed equivalents of Mg-rich calc-alkaline lamprophyre dykes, most likely derived from a hybridized mantle source. Mantle metasomatism was probably related to a subduction event prior to the peak of compressional Kenoran deformation in the Pontiac Subprovince.


2017 ◽  
Vol 125 (3) ◽  
pp. 299-316 ◽  
Author(s):  
Xiaoran Zhang ◽  
Guochun Zhao ◽  
Paul R. Eizenhöfer ◽  
Min Sun ◽  
Yigui Han ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Xue ◽  
Xiao-Hua Deng ◽  
Leon Bagas ◽  
Xu-An Chen ◽  
Yan-Shuang Wu ◽  
...  

The eastern Tianshan Terrane is a highly prospective zone that contains several porphyry Cu–Mo, VMS Cu–Zn, magmatic Cu–Ni, epithermal and orogenic Au deposits. However, few attention has been paid to tungsten deposits. Of these, the source and evolution of the mineralising fluids related to the skarn W deposits are poorly understood. The Heiyanshan W deposit is hosted by metamorphosed clastic and carbonate beds in the Mesoproterozoic Jianshanzi Formation deposited on a continental margin tectonic setting. The Jianshanzi Formation is intruded by biotite monzogranite that yield weighted 206Pb/238U age of 326.9 ± 1.6 Ma, which suggest that the Heiyanshan W deposit was formed in the Carboniferous. The mineralisation is hosted by a prograde hydrothermal altered zone represented by a garnet (–pyroxene) skarn, and retrograde skarn characterised by fine-grained scheelite. The paragenesis of the Heiyanshan mineralisation can be subdivided into prograde skarn stage, retrograde skarn stage, quartz-sulphide stage and quartz-calcite vein stage. The types of fluid inclusions recognised in the various minerals in the deposits are liquid-rich aqueous, vapour-rich aqueous, and daughter mineral-bearing. The homogenisation temperatures of fluid inclusions from the Heiyanshan deposit decrease from 290 ± 28°C in garnet, through 232 ± 31°C in scheelite, to 232 ± 36°C in quartz and 158 ± 15°C in non-mineralised calcite, which is typical of W-bearing skarn deposits worldwide. The δ18Owater values from the Heiyanshan deposit range from +4.7 to +6.6‰ in garnet, +1.3 to +1.9‰ in quartz and −6.1 to −4.4‰ in calcite. We have measured δD in fluid inclusions from different minerals, although these bulk analyses are just a mixture of the different FIA’s present in the sample. The δD values of fluid inclusions in garnet, quartz, and calcite are from −121 to −71‰, −84 to −75‰ and −101 to −82‰, respectively, also indicative of deep-sourced magmatic fluids mixed with meteoric water. The decrease in the homogenisation temperatures for the fluid inclusions at the Heiyanshan deposit is accompanied by a drop in salinity indicating that tungsten-bearing minerals precipitated during fluid mixing between magmatic fluids and meteoric water. We conclude that eastern Tianshan Terrane contains two pulse of tungsten metallogenic events of Late Carboniferous and Early Triassic.


2017 ◽  
Vol 86 ◽  
pp. 584-599 ◽  
Author(s):  
Huashan Sun ◽  
Huan Li ◽  
Martin Danišík ◽  
Qinglin Xia ◽  
Chuling Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document