alkaline rock
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1204
Author(s):  
Yuan Xue ◽  
Ningyue Sun ◽  
Guowu Li

Previous geochemical and petrological studies have concluded that initially magmatic Nb–Ta mineralization is often modified by post-magmatic hydrothermal fluids; however, there is still a lack of mineralogical evidence for the syenite-related Nb–Ta deposit. From the perspective of Nb–Ta minerals, the pyrochlore supergroup minerals have significance for indicating the fluid evolution of alkaline rock or related carbonatite type Nb–Ta deposits. The Panzhihua–Xichang (Panxi) region is a famous polymetallic metallogenic belt in southwestern China, abound with a huge amount of Nb–Ta mineralized syenitic dikes. This study focuses on the mineral textures and chemical compositions of the main Nb–Ta oxide minerals (including columbite-(Fe), fersmite, fergusonite-(Y), and especially pyrochlore group minerals) in samples from the Baicao and Xiaoheiqing deposits, in the Huili area, Panxi region, to reveal the magma evolution process of syenitic-dike-related Nb–Ta deposits. The Nb–Ta oxides in the Huili syenites are commonly characterized by a specific two-stage texture on the crystal scale, exhibiting a complex metasomatic structure and compositional zoning. Four types of pyrochlore group minerals (pyrochlores I, II, III, and IV) formed in different stages were identified. The euhedral columbite-(Fe), fersmite, and pyrochlores I and II minerals formed in the magmatic fractional crystallization stage. Anhedral pyrochlore III minerals are linked to the activity of magma-derived hydrothermal fluids at the late stages of magma evolution. The pyrochlore IV minerals and fergusonite-(Y) tend to be more concentrated in areas that have undergone strong albitization, which is a typical phenomenon of hydrothermal alteration. These mineralogical phenomena provide strong evidences that the magmatic-hydrothermal transitional stage is the favored model for explaining the Nb–Ta mineralization process. It is also concluded that the changes in chemical composition and texture characteristics for pyrochlore group minerals could serve as a proxy for syenite-related Nb–Ta mineralization processes.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 430
Author(s):  
Mirai Takebe ◽  
Masao Ban ◽  
Motohiro Sato ◽  
Yuki Nishi

The geologic and petrologic study of the Kattadake pyroclastics (around 10 ka) from the Zao volcano (NE Japan) revealed the structure of the magma plumbing system and the mixing behavior of the shallow chamber. The Kattadake pyroclastic succession is divided into lower and upper parts by a remarkable discontinuity. All rocks belong to medium-K, calc-alkaline rock series and correspond to ol-cpx-opx basaltic-andesite to andesite with 20–28 vol% phenocrystic modal percentage. All rocks were formed by mixing between andesitic magma and near aphyric basalt. The petrologic features of andesites of lower and upper parts are similar, 59–61 wt% SiO2, having low-An plagioclase and low-Mg pyroxenes, with pre-eruptive conditions corresponding to 960–980 °C, 1.9–3.5 kb, and 1.9–3.4 wt% H2O. However, the basalts were ca. 49.4 wt% SiO2 with Fo~84 olivine in the lower part and 51.8 wt% SiO2 with Fo~81 olivine and high-An plagioclase the in upper one. The percentage of basaltic magma in the mixing process was lower, but the temperature of the basalt was higher in the lower part than the upper one. This means that the shallow magma chamber was reactivated more efficiently by the hotter basalts and that the mixed magma with a 70–80% of melt fraction was formed by a smaller percentage of the basaltic magma.


2021 ◽  
Author(s):  
Youssef Ahechach ◽  
Muhammad Ouabid ◽  
Otmane Raji ◽  
Jean-Louis Bodinier ◽  
Khalid Amrouch ◽  
...  

<p>Alkaline complexes are an important target for geological exploration, with both scientific and economic interests. They are host to different types of mineral deposits, such as Rare Earths, igneous phosphates, -and K-rich minerals and rocks. In Morocco, the Central High-Atlas (CHA) hosts several transitional to alkaline complexes ranging from Upper Jurassic to Eocene and showing almost all the differentiation terms of transitional to alkaline suites. These alkaline complexes are however poorly explored and their potential in terms of mineral resources is still elusive.</p><p>The aim of this research is to use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to discriminate different transitional to alkaline rock lithologies and their associated mineralizations. For that purpose, series of band ratios proven to be sensitive to the silica, mafic, felsic and carbonate contents of transitional to alkaline rocks were applied. Our results show that the major Upper Jurassic magmatic intrusions of Moroccan CHA, such as Anemzi, Inouzane, Tassent, and Tasraft, hold distinct igneous facies, mainly composed of Mafic to felsic rocks. Field and petrographic observations have confirmed the ASTER results and highlighted that these rocks are formed of gabbro to syenite. The later are associated with significant feldspar concentrations, but also host apatite, garnet, and magnetite vein-type ores. Thereafter, field- and petrographic-based data were used as training data to perform a supervised classification allowing to refine the geological mapping of the studied alkaline intrusions.</p>


2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2020 ◽  
Vol 47 (3) ◽  
pp. 119-142
Author(s):  
Roger H. Mitchell

Lamproite is a rare ultrapotassic alkaline rock of petrological importance as it is considered to be derived from metasomatized lithospheric mantle, and of economic significance, being the host of major diamond deposits. A review of the nomenclature of lamproite results in the recommendation that members of the lamproite petrological clan be named using mineralogical-genetic classifications to distinguish them from other genetically unrelated potassic alkaline rocks, kimberlite, and diverse lamprophyres. The names “Group 2 kimberlite” and “orangeite” must be abandoned as these rock types are varieties of bona fide lamproite restricted to the Kaapvaal Craton. Lamproites exhibit extreme diversity in their mineralogy which ranges from olivine phlogopite lamproite, through phlogopite leucite lamproite and potassic titanian richterite-diopside lamproite, to leucite sanidine lamproite. Diamondiferous olivine lamproites are hybrid rocks extensively contaminated by mantle-derived xenocrystic olivine. Currently, lamproites are divided into cratonic (e.g. Leucite Hills, USA; Baifen, China) and orogenic (Mediterranean) varieties (e.g. Murcia-Almeria, Spain; Afyon, Turkey; Xungba, Tibet). Each cratonic and orogenic lamproite province differs significantly in tectonic setting and Sr–Nd–Pb–Hf isotopic compositions. Isotopic compositions indicate derivation from enriched mantle sources, having long-term low Sm/Nd and high Rb/Sr ratios, relative to bulk earth and depleted asthenospheric mantle. All lamproites are considered, on the basis of their geochemistry, to be derived from ancient mineralogically complex K–Ti–Ba–REE-rich veins, or metasomes, in the lithospheric mantle with, or without, subsequent contributions from recent asthenospheric or subducted components at the time of genesis. Lamproite primary magmas are considered to be relatively silica-rich (~50–60 wt.% SiO2), MgO-poor (3–12 wt.%), and ultrapotassic (~8–12 wt.% K2O) as exemplified by hyalo-phlogopite lamproites from the Leucite Hills (Wyoming) or Smoky Butte (Montana). Brief descriptions are given of the most important phreatomagmatic diamondiferous lamproite vents. The tectonic processes which lead to partial melting of metasomes, and/or initiation of magmatism, are described for examples of cratonic and orogenic lamproites. As each lamproite province differs with respect to its mineralogy, geochemical evolution, and tectonic setting there is no simple or common petrogenetic model for their genesis. Each province must be considered as the unique expression of the times and vagaries of ancient mantle metasomatism, coupled with diverse and complex partial melting processes, together with mixing of younger asthenospheric and lithospheric material, and, in the case of many orogenic lamproites, with Paleogene to Recent subducted material.


2020 ◽  
Vol 12 (1) ◽  
pp. 133-147
Author(s):  
Francesco Antonio Ambrosio

AbstractThe ultra-alkaline rocks have exotic features that frustrated many attempts to group them in a single classification diagram. A consistent classification would be very useful to define a possible consanguinity, an argument that feed a living debate. This paper investigates the petrologic characteristics of the Cenozoic Italian ultra-alkaline rock-suite using -Rank Entropy Anentropy (RHA) and Principal Component Analysis (PCA)-. The RHA formula is the succession of component’s symbols arranged according to the diminishing of their elemental content in the analysis (whole rock composition). Other two parameters considered are an expression of the anentropy and entropy of the system. The PCA allows the definition of new latent variables based on geochemical compositions through linear combinations of the major oxides. Using both statistical methods was possible to create discrete groups of rock-types, associated by genetic relationship. The groups plotted in the Mg-Ca-Al ternary diagram depicts two main evolutionary arrays. We interpret the chemical variance in term of a general magmatic processes based on immiscibility and crystal fractionation. A comparison with similar association worldwide give a more general prospective to the magmato-tectonic assignment of these rocks, which is highly controversial in Italy.


Geosciences ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Nikolay E. Kozlov ◽  
Nikolay O. Sorokhtin ◽  
Eugeny V. Martynov

The Kola region hosts numerous Paleozoic massifs of ultrabasic alkaline rocks and carbonatites with deposits of commercially valuable metals, such as iron, tantalum, niobium, and rare earth elements. These magmatic complexes are characterized by high contents of alkaline elements at generally low contents of SiO2 and/or Al2O3. In this study, we examined the precursors to the formation of the unique Paleozoic alkaline province through studying the early Precambrian stages in the evolution of the Kola collision area, from where these unique features probably originated. We mathematically modeled the changes in the chemical composition of these rocks. The obtained data can be used for metallogenic forecasting, which indicated a number of Precambrian objects in the region, namely, the Lapland Granulite Belt of the Kola region and granulite belts in Eurasia. The mathematical modeling performed during this research depicted a linear trend that defined the style of the changes in the chemical composition at the transition from the metaultrabasic-basic rocks of the Lapland granulite belt to the group of belts in Eurasia. These differences are statistically significant with respect to the obtained trend (chemical composition projected on the trend), mainly manifested as increased SiO2 and Al2O3 contents with a decreasing total alkalis content, which is opposite to the indicated trends of the changing chemical composition in the Paleozoic alkaline rock units of the Kola region. We concluded that one of the reasons for the unique composition of the Paleozoic magmatism products could be a specific feature of the earlier Neoarchean stages of the tectonic-magmatic activity in the northeastern Baltic Shield, which implies a close relationship between later geological events and the early Precambrian history, at least in the study area.


2019 ◽  
Vol 84 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Roger H. Mitchell ◽  
Rudy Wahl ◽  
Anthony Cohen

AbstractThe Good Hope carbonatite is located adjacent to the Prairie Lake alkaline rock and carbonatite complex in northwestern Ontario. The occurrence is a heterolithic breccia consisting of diverse calcite, dolomite and ferrodolomite carbonatites containing clasts of magnesio-arfvedsonite + potassium feldspar, phlogopite + potassium feldspar together with pyrochlore-bearing apatitite clasts. The apatitite occurs as angular, boudinaged and schlieren clasts up to 5 cm in maximum dimensions. In these pyrochlore occurs principally as euhedral single crystals (0.1–1.5 cm) and can comprise up to 25 vol.% of the clasts. Individual clasts contain compositionally- and texturally-distinct suites of pyrochlore. The pyrochlores are hosted by small prismatic crystals of apatite (~100–500 μm × 10–25 μm) that are commonly flow-aligned and in some instances occur as folds. Allotriogranular cumulate textures are not evident in the apatitites. The fluorapatite does not exhibit compositional zonation under back-scattered electron spectroscopy, although ultraviolet and cathodoluminescence imagery shows distinct cores with thin (<50 μm) overgrowths. Apatite lacks fluid or solid inclusions of other minerals. The apatite is rich in Sr (7030–13,000 ppm) and rare earth elements and exhibits depletions in La, Ce, Pr and Nd (La/NdCN ratios (0.73–1.14) relative to apatite in cumulate apatitites (La/NdCN > 1.5) in the adjacent Prairie Lake complex. The pyrochlore are primarily Na–Ca pyrochlore of relatively uniform composition and minor Sr contents (<2 wt.% SrO). Irregular resorbed cores of some pyrochlores are A-site deficient (>50%) and enriched in Sr (6–10 wt.% SrO), BaO (0.5–3.5 wt.%), Ta2O5 (1–2 wt.%) and UO2 (0.5–2 wt.%). Many of the pyrochlores exhibit oscillatory zoning. Experimental data on the phase relationships of haplocarbonatite melts predicts the formation of apatite and pyrochlore as the initial liquidus phases in such systems. However, the texture of the clasts indicates that pyrochlore and apatite did not crystallise together and it is concluded that pyrochlores formed in one magma have been mechanically mixed with a different apatite-rich magma. Segregation of the apatite–pyrochlore assemblage followed by lithification resulted in the apatitites, which were disrupted and fragmented by subsequent batches of diverse carbonatites. The genesis of the pyrochlore apatitites is considered to be a process of magma mixing and not simple in situ crystallisation.


Author(s):  
A. V. Koloskov ◽  
M. Yu. Davydova ◽  
D. V. Kovalenko

The paper presents new age and isotope geochemical characteristics for plateau effusive rocks from the Central Kamchatka Depression (CKD) and Nikolka Volcano. We compared these data with the data on rocks from the Klyuchevskoy group of volcanoes and also Sheveluch, Kharchinsky, Zarechny, Nachikinsky, Bakening volcanoes and NEB-adakites from Pliocene shield volcano between the Ozernaya Kamchatka and Pravaya Kamchatka rivers. It is shown that the evolutionally advanced (often more alkaline) rock from Nachikinsky, Bakening, Nikolka volcanoes and the Pliocene shield volcanoe significantly differ in isotope-geochemical characteristics from the Klyuchevskoy group of volcanoes rocks. Exactly this type of rocks is characteristic for CKD as rift structure. The Klyuchevskoy group of volcanoes rock are not typomorphic for this structure and manifest the usual orogenic volcanism stage, typical for much larger area. Miocene plateau effusive rocks differ from rocks of this group only by slightly increased potassium alkalinity. The rift type rocks characteristic feature is not only their increased alkalinity, but also specific microcomponents ratios: Ti/V > 0.004, Nb/Y > 0.28, Dy/Yb > 2.00, La/Yb > 6.5, Sm/Yb > 2.4, Lu/Hf < 0.08. Along with isotopic characteristics, these ratios suggest the existence of the single deep asthenospheric mantle reservoir for initial melts. The Kurile-Kamchatka and Commander-Aleutian island-arc systems’ junction is marked by the increased fluid enrichment (Ce group of REE) of melts for rocks of certain volcanoes: Shiveluch, Kharchinsky, Zarechny.


Sign in / Sign up

Export Citation Format

Share Document