quartz porphyry
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1414
Author(s):  
Baoqiang Tai ◽  
Wentian Mi ◽  
Genhou Wang ◽  
Yingjie Li ◽  
Xu Kong

Abundant Early Cretaceous magmatism is conserved in the central and southern Great Xing’an Range (GXR) and has significant geodynamic implications for the study of the Late Mesozoic tectonic framework of northeast China. In this study, we provide new high-precision U–Pb zircon geochronology, whole-rock geochemistry, and zircon Hf isotopic data for representative intrusive rocks from the northern part of the Ulanhot area to illustrate the petrogenesis types and magma source of these rocks and evaluate the tectonic setting of the central-southern GXR. Laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) zircon U–Pb dating showed that magmatism in the Ulanhot area (monzonite porphyry: 128.07 ± 0.62 Ma, quartz monzonite porphyry: 127.47 ± 0.36, quartz porphyry: 124.85 ± 0.34, and granite porphyry: 124.15 ± 0.31 Ma) occurred during the Early Cretaceous. Geochemically, monzonite porphyry belongs to the metaluminous and alkaline series rocks and is characterized by high Al2O3 (average 17.74 wt.%) and TiO2 (average 0.88 wt.%) and low Ni (average 4.63 ppm), Cr (average 6.69 ppm), Mg# (average 31.11), Y (average 15.16 ppm), and Yb (average 1.62 ppm) content with enrichment in Ba, K, Pb, Sr, Zr, and Hf and depletion in Ti, Nb, and Ta. The granitic rocks (e.g., quartz monzonite porphyry, quartz porphyry, and granite porphyry) pertain to the category of high-K calc-alkaline rocks and are characterized by high SiO2 content (>66 wt.%) and low MgO (average 0.69 wt.%), Mg# (average 31.49 ppm), Ni (average 2.78 ppm), and Cr (average 8.10 ppm) content, showing an affinity to I-type granite accompanied by Nb, Ta, P, and Ti depletion and negative Eu anomalies (δEu = 0.57–0.96; average 0.82). The Hf isotopic data suggest that these rocks were the product of the partial melting of juvenile crustal rocks. Notably, fractionation crystallization plays a crucial role in the process of magma emplacement. Combining our study with published ones, we proposed that the Early Cretaceous intrusive rocks in the Ulanhot area were formed in an extensional tectonic background and compactly related to the subduction of the Paleo-Pacific Ocean plate.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Shiyu Liu ◽  
Yuping Liu ◽  
Lin Ye ◽  
Chen Wei ◽  
Yi Cai ◽  
...  

The Dulong Sn-Zn-In polymetallic deposit in the Yunnan province, SW China, hosts a reserve of 5.0 Mt Zn, 0.4 Mt Sn, and 7 Kt In. It is one of the most important polymetallic tin ore districts in China. Granites at Dulong mining area include mainly the Laojunshan granite (third phase), which occurs as quartz porphyry or granite porphyry dikes in the Southern edge of the Laojunshan intrusive complex. Granites of phases one and two are intersected at drill holes at depth. There are three types of cassiterite mineralization developed in the deposit: cassiterite-magnetite ± sulfide ore (Cst I), cassiterite-sulfide ore (Cst II) within the proximal skarn in contact with the concealed granite (granites of phases one to two and three), and cassiterite-quartz vein ore (Cst III) near porphyritic granite. Field geology and petrographic studies indicate that acid neutralising muscovitization and pyroxene reactions were part of mechanisms for Sn precipitation resulting from fluid-rock interaction. In situ U–Pb dating of cassiterite samples from the ore stages of cassiterite-sulfide (Cst II) and Cassiterite-quartz vein (Cst III) yielded Tera-Wasserburg U–Pb lower intercept ages of 88.5 ± 2.1 Ma and 82.1 ± 6.3 Ma, respectively. The two mineralization ages are consistent with the emplacement age of the Laojunshan granite (75.9–92.9 Ma) within error, suggesting a close temporal link between Sn-Zn(-In) mineralization and granitic magmatism. LA-ICPMS trace element study of cassiterite indicates that tetravalent elements (such as Zr, Hf, Ti, U, W) are incorporated in cassiterite by direct substitution, and the trivalent element (Fe) is replaced by coupled substitution. CL image shows that the fluorescence signal of Cst I–II is greater than that of Cst III, which is caused by differences in contents of activating luminescence elements (Al, Ti, W, etc.) and quenching luminescence element (Fe). Elevated W and Fe but lowered Zr, Hf, Nb, and Ta concentrations of the three type cassiterites from the Dulong Sn-Zn-In polymetallic deposit are distinctly different from those of cassiterites in VMS/SEDEX tin deposits, but similar to those from granite-related tin deposits. From cassiterite-magnetite ± sulfide (Cst I), cassiterite-sulfide ore (Cst II), to cassiterite-quartz vein ore-stage (Cst III), high field strength elements (HFSEs: Zr, Nb, Ta, Hf) decrease. This fact combined with cassiterite crystallization ages, indicates that Cst I–II mainly related to concealed granite (Laojunshan granites of phases one and two) while Cst III is mainly related to porphyritic granite (Laojunshan granites of phase three).


2020 ◽  
Vol 63 (1) ◽  
pp. 1-18
Author(s):  
Máté Szemerédi ◽  
Andrea Varga ◽  
János Szepesi ◽  
Elemér Pál-Molnár ◽  
Réka Lukács

AbstractPermian felsic volcanic rocks were encountered in petroleum exploration boreholes in SE Hungary (eastern Pannonian Basin, Tisza Mega-unit, Békés–Codru Unit) during the second half of the 20th century. They were considered to be predominantly lavas (the so-called “Battonya quartz-porphyry”) and were genetically connected to the underlying “Battonya granite.” New petrographic observations, however, showed that the presumed lavas are crystal-poor (8–20 vol%) rhyolitic ignimbrites near Battonya and resedimented pyroclastic or volcanogenic sedimentary rocks in the Tótkomlós and the Biharugra areas, respectively. The studied ignimbrites are usually massive, matrix-supported, fiamme-bearing lapilli tuffs with eutaxitic texture as a result of welding processes. Some samples lack vitroclastic matrix and show low crystal breakage, but consist of oriented, devitrified fiammes as well. Textural features suggest that the latter are high-grade rheomorphic ignimbrites.Felsic volcanic rocks in SE Hungary belong to the Permian volcanic system of the Tisza Mega-unit; however, they show remarkable petrographic differences as compared to the other Permian felsic volcanic rocks of the mega-unit. In contrast to the crystal-poor rhyolitic ignimbrites of SE Hungary with rare biotite, the predominantly rhyodacitic–dacitic pyroclastic rocks of the Tisza Mega-unit are crystal-rich (40–45 vol%) and often contain biotite, pyroxene, and garnet. Additionally, some geochemical and geochronological differences between them were also observed by previous studies. Therefore, the Permian felsic volcanic rocks in SE Hungary might represent the most evolved, crystal-poor rhyolitic melt of a large-volume felsic (rhyodacitic–dacitic) volcanic system.The Permian volcanic rocks of the studied area do not show any evident correlations with either the Permian felsic ignimbrites in the Finiş Nappe (Apuseni Mts, Romania), as was supposed so far, or the similar rocks in any nappe of the Codru Nappe System. Moreover, no relevant plutonic–volcanic connection was found between the studied samples and the underlying “Battonya granite.”


Author(s):  
Clive M. RICE ◽  
Darren F. MARK

ABSTRACTAn Ordovician subvolcanic intrusive complex hosted by Neoproterozoic metasediments crops out at Souter Head about 6km S of Aberdeen, Scotland. The complex is composed mainly of two-mica red granite and breccia with minor dykes of pegmatite, quartz porphyry, felsite and dolerite, and widespread quartz veining, hydrothermal alteration and minor molybdenite mineralisation. Anomalous levels of bismuth (Bi), arsenic (As) and gold (Au) occur in quartz–pyrite veins. The complex has been mapped and the major- and minor-element geochemistry, including rare-earth elements of intrusives and mineralisation, has been determined. These data reveal a complex tectonic, intrusive and hydrothermal history. The intrusives are peraluminous and magnetite-, muscovite- and garnet-bearing. The youngest member, a quartz porphyry, is highly fractionated. There are two stages of hydrothermal activity: the first is linked to the explosive release of volatiles from a granite cupola and breccia formation; and the second, widespread quartz veining. Mo is associated with both stages, and Bi–As–Au anomalies are found in late quartz–pyrite veins. The mineralisation is classified as a granite-related vein-type Mo system. The unique preservation, in the Grampian terrane, of an Ordovician subvolcanic complex may be attributed to pre-Devonian movements on the nearby Dee fault and possibly also the collapse of the magma chamber following the explosive release of volatiles. The combination of large size, poor exposure and abundant multi-stage hydrothermal activity suggests that there is potential for further Mo and possibly Au mineralisation in this complex. Further mineralisation of this style may be present in the NE Grampian terrane.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 274
Author(s):  
Zhitao Xu ◽  
Jinggui Sun ◽  
Xiaolong Liang ◽  
Zhikai Xu ◽  
Xiaolei Chu

Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these Pb–Zn polymetallic mineralization-related intrusions. Therefore, we examine the representative Erdaohezi deposit and show that these mineralization-related hypabyssal intrusions are composed of quartz porphyry and andesite porphyry with concordant zircon U–Pb ages of 160.3 ± 1.4 Ma and 133.9 ± 0.9 Ma, respectively. These intrusions are peraluminous and high-K calc-alkaline or shoshonitic with high Na2O + K2O contents, enrichment in large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), similar to continental arc intrusions. The zircon εHf(t) values range from 3.1 to 8.0, and the 176Hf/177Hf values range from 0.282780 to 0.282886, with Hf-based Mesoproterozoic TDM2 ages. No differences exist in the Pb isotope ratios among the quartz porphyry, andesite porphyry and ore body sulfide minerals. Detailed elemental and isotopic data imply that the quartz porphyry originated from a mixture of lower crust and newly underplated basaltic crust, while the andesite porphyry formed from the partial melting of Mesoproterozoic lower crust with the minor input of mantle materials. Furthermore, a magmatic–hydrothermal origin is favored for the Pb–Zn polymetallic mineralization in the Erdaohezi deposit. Integrating new and published tectonic evolution data, we suggest that the polymetallic mineralization-related magmatism in the Erdaohezi deposit occurred in a back-arc extensional environment at ~133 Ma in response to the rollback of the Paleo-Pacific Plate.


2020 ◽  
Vol 491 (1) ◽  
pp. 127-130
Author(s):  
A. A. Konyshev ◽  
M. O. Anosova ◽  
A. A. Rusak ◽  
I. A. Alekseev ◽  
A. I. Yakushev ◽  
...  
Keyword(s):  

Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 606
Author(s):  
Zhu ◽  
Wang ◽  
Pang ◽  
Zhen ◽  
Yang ◽  
...  

The Liyuan gold deposit, located in the central Taihang Mountains, North China Craton, forms an important part of the Taihang polymetallogenic belt. The origin of ore-forming fluids and the genesis of this deposit remains controversial. In this paper, fluid inclusions (FIs) microthermometry and H-O-S isotopes analysis are conducted to constrain the origin of ore-forming fluids and genesis. The main findings are as follows: (1) Three hydrothermal metallogenic stages are identified: Quartz–pyrite, quartz–polymetallic sulfide, and quartz–carbonate stages; (2) three types of primary FIs are recognized: CO2-aqueous (type I), pure CO2 (type II), and aqueous FIs (type III); (3) ore-forming fluids are characterized by medium–low temperatures, medium–low salinity, and H2O-CO2-NaCl ± CH4 system; (4) H-O isotopes indicate that the ore-forming fluids mainly have a magmatic origin and late-stage ore fluids mixed with meteoric water; (5) S isotopes further confirm that the sulfides most likely have a deep magma source with variation caused by changes in oxygen fugacity; and (6) fluid immiscibility and water–rock interactions are considered to be the two main mechanisms of gold deposition. Due to the lack of large granite bodies exposed in this ore district, we infer that the fluids of gold deposit and quartz porphyry may have both been exsolved from a concealed granite pluton at deeper locations, and we further propose that Liyuan gold deposit is typical magmatic–hydrothermal gold deposits.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Takahito Kuroki

<p><strong>Abstract.</strong> Munakata city is compiling its city history now. Then, in March 2019, the natural environment part edition of "Umi, Yama, Kawa" is scheduled to be published. I had to do landform mapping of Okinoshima island and sea bed in this project. In this abstract, the geography of Okinoshima, the process of mapping and some of the results are described.</p><p>The Sacred Island of Okinoshima and Associated Sites in the Munakata Region was registered as a World Heritage in July 2017. Okinoshima island is located about 70 km northwest of Kyushu main island. The island consists of a steep cliff and gentle slope and the area of the plain is small. It consists of shale, quartz porphyry, and talus deposit.</p><p>Fig.1 shows the landscape of Okinoshima island from the south. The highest peak is Mt. Ichinotake, the rock on the left is Mikadobashira and the rock on the right is Tengu-iwa. There is a holy place, Okitsu-miya of Munakata Taisha at the foot of the island. Residents have unwritten taboos that forbid actions such as removing anything from the island, or revealing anything seen or heard there.</p><p>Maps of land and sea bed were made by various kinds of geographic information by using GIS. They are ground elevation map, slope map, relief map and 3D image. Fundamental geospatial data of GSI (Geospatial Information Authority of Japan), map information related to isobaths of JHA (Japan Hydrographic Association) and airborne laser scanner data of Munakata city are used as the geographic information.</p><p>Landform classification map was made by interpretation of each map and field survey. Classified landforms are crest, dissected valley,steep cliff,landslip lobe,talus cone, seaside and man-made land. Farthermore, geologic and topographic lineaments were interpreted.</p><p>Fig.2 shows the 3D image of Okinoshima from the east. It can be identified that the height of Okinoshima is about 340 m above the flat sea bed. The topography between Okinoshima and Koyajima under the sea surface, is a shallow flat table in the west side and a concave area inclining to the east in the east side. The shape of the set of islands is like a horseshoe-shaped caldera.</p><p>In this poster presentation, I would like to introduce that we can understand the landform and its formative process of Okinoshima where access is restricted from the analysis and reference of such maps by GIS.</p>


Sign in / Sign up

Export Citation Format

Share Document