geochemical evolution
Recently Published Documents


TOTAL DOCUMENTS

637
(FIVE YEARS 133)

H-INDEX

57
(FIVE YEARS 4)

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 503
Author(s):  
Roxane Tremblay ◽  
Julien Walter ◽  
Romain Chesnaux ◽  
Lamine Boumaiza

The hydrogeochemical study of the Lanaudière and Eastern Mauricie regions (Canada) demonstrates that trace elements appear to be better tracers of geological influence on groundwater chemistry than major elements. Isotopic ratios and the similar chemical composition of groundwater suggest that the physicochemical parameters of groundwater have a greater effect on hydrogeochemical mechanisms than the immediate geological environment The results allow us to propose a conceptual model of groundwater geochemical evolution with the aim to guide the protection and sustainable management of regional groundwater resources in the Lanaudière and Eastern Mauricie regions. These regions were selected because of their location at the boundary of the Grenville and St. Lawrence Platform geological provinces, representing two distinct geological contexts (Precambrian crystalline rocks and Paleozoic sedimentary rocks). Regional-scale hydrogeochemical and isotopic groundwater characterization was carried out to identify the role of the differences in regional geology on groundwater quality. Our analyses included major and trace elements, stable isotopes, and multivariate statistics. Similar processes are at the origin of dissolved major chemical elements and suggest that soluble minerals common to both geological provinces control groundwater chemistry. If differences exist, they are due to the hydrogeological conditions of the samples, such as residence time or groundwater entrapment at the time of the postglacial marine incursion of the Champlain Sea, rather than the geological context. Some differences, sometimes significant, were observed for some minor elements (F−, Mn2+, H2S), which implies a more comprehensive knowledge of the chemistry of the stratigraphic units within the Lanaudière and Eastern Mauricie aquifers.


Author(s):  
Karmina Aquino ◽  
Carlo Arcilla ◽  
Christian Schardt ◽  
Carmela Tupaz

While there are extensive studies on the mineralogy and geochemistry of laterites worldwide, the temporal and spatial mineralogical development of a typical nickel laterite profile is still poorly constrained. In this study, we present a detailed mineralogical and geochemical characterization of samples systematically collected from a nickel laterite profile at the Sta. Cruz nickel laterite deposit, Zambales, Philippines, to describe the temporal and spatial development of the laterite profile. Wavelength-dispersive X-ray fluorescence spectroscopy (WDSXRF), mass balance-element mobility calculations, transmitted and reflected light microscopy, and previously reported results from coupled X-ray diffraction (XRD) and Rietveld refinement analyses, reveal that the laterite profile investigated is composed of two main horizons: the limonite and saprolite zones, separated by a thin transitional zone. The main zones are further subdivided into subzones based primarily on the mineral assemblage and major element chemistry: upper limonite, lower limonite, transitional zone, upper saprolite, and lower saprolite. Late-stage garnierite veins were observed cutting the upper and lower saprolite subzones. Investigation of the structure of goethite within the limonite zone via Rietveld refinement show that the crystallinity of goethite decreases with increasing Ni content and increasing crystallite size. This suggests that upwards through the limonite zone, as goethite ages, its crystallinity increases which possibly results in the removal of Ni from its crystal structure and eventual remobilization to the lower laterite zones. We propose a spatio-temporal model of the formation of the Sta. Cruz laterite consisting of four stages: (1) early-stage alteration, (2) continued serpentinization and volume expansion, (3) late stage serpentinization and incipient oxide formation, and (4) goethite ageing and garnierite formation.


Author(s):  
Anthony Dosseto ◽  
Alex Hannan-Joyner ◽  
Eron Raines ◽  
Eric Gayer ◽  
Laurent Michon

Lithos ◽  
2021 ◽  
pp. 106560
Author(s):  
SimonV. Hohl ◽  
Stephan Schuth ◽  
Carsten Münker ◽  
Stephan König ◽  
Dieter Garbe-Schönberg ◽  
...  

Petrology ◽  
2021 ◽  
Vol 29 (6) ◽  
pp. 627-656
Author(s):  
V. A. Lebedev ◽  
Yu. V. Goltsman ◽  
T. I. Oleinikova ◽  
A. V. Parfenov ◽  
A. I. Yakushev

2021 ◽  
Vol 62 (9) ◽  
pp. 1061-1073
Author(s):  
V.S. Antipin ◽  
L.V. Kushch ◽  
D. Odgerel ◽  
O.Yu. Belozerova

Abstract —We present results of petrographic, mineralogical, and geochemical study of all types of rocks of a multiphase pluton and consider the chemical evolution of igneous and metasomatic rocks of the Baga Gazriin Chuluu pluton, based on new precise analytical data. At the early stage of their formation, the pluton granites were already enriched in many trace elements (Li, Rb, Cs, Be, Nb, Ta, Th, and U), F, and HREE relative to the upper continental crust. They show strong negative Ba, Sr, La, and Eu anomalies, which is typical of rare-metal Li–F granites. The geochemical evolution of the Baga Gazriin Chuluu multiphase pluton at the postmagmatic stage was marked by the most intense enrichment of greisens and microclinites with lithophile and ore elements (Sn, W, and Zn) and the formation of ore mineralization. In the permeable rift zone where the Baga Gazriin Chuluu pluton is located, the fluid–magma interaction took place under the impact of a mantle plume. High-temperature mantle fluids caused melting of the crustal substratum, which determined the geochemical specifics of Li–F granite intrusions. Genesis of granitic magma enriched in Li, F, Rb, Sn, and Ta is possible at the low degrees of melting of the lower crustal substratum. The Baga Gazriin Chuluu pluton formed in the upper horizons of the Earth’s crust, where magma undergoes strong differentiation and the saturation of fluids with volatiles can lead to the postmagmatic formation of metasomatites of varying alkalinity (zwitters (greisens), microclinites, and albitites) producing rare-metal mineralization. By the example of the early Mesozoic magmatism area of Mongolia, it is shown that the formation of granites and associated rare-metal minerals is due to the interaction of mantle fluids with the crustal material and the subsequent evolution of granitic magmas.


2021 ◽  
Vol 3 ◽  
Author(s):  
Chidera O. Iloejesi ◽  
Lauren E. Beckingham

Subsurface porous aquifers are being considered for use as reservoirs for compressed energy storage of renewable energy. In these systems, a gas is injected during times in which production exceeds demand and extracted for energy generation during periods of peak demand or scarcity in production. Current operational subsurface energy facilities use salt caverns for storage and air as the working gas. CO2 is potentially a more favorable choice of working gas where under storage conditions CO2 has high compressibility which can improve operational efficiency. However, the interaction of CO2 and brine at the boundary of the storage zone can produce a chemically active fluid which can result in mineral dissolution and precipitation reactions and alter the properties of the storage zone. This study seeks to understand the geochemical implications of utilization of CO2 as a working gas during injection, storage and extraction flow cycles. Here, reactive transport simulations are developed based on 7 h of injection, 11 h of withdrawal and 6 h of reservoir closure, corresponding to the schedule of the Pittsfield field test, for 15 years of operational life span to assess the geochemical evolution of the reservoir. The evolution in the storage system is compared to a continuously cyclic system of 12 h injection and extraction. The result of the study on operational schedule show that mineral reactivity occurs at the inlet of the domain. Furthermore, the porosity of the inner domain is preserved during the cycling of CO2 acidified brine for both systems.


Sign in / Sign up

Export Citation Format

Share Document