A stochastic algorithm for scheduling bag-of-tasks applications on hybrid clouds under task duration variations

2021 ◽  
pp. 111123
Author(s):  
Lu Yin ◽  
Junlong Zhou ◽  
Jin Sun
Author(s):  
Moshe M. H. Aharoni ◽  
Anat V. Lubetzky ◽  
Liraz Arie ◽  
Tal Krasovsky

Abstract Background Persistent postural-perceptual dizziness (PPPD) is a condition characterized by chronic subjective dizziness and exacerbated by visual stimuli or upright movement. Typical balance tests do not replicate the environments known to increase symptoms in people with PPPD—crowded places with moving objects. Using a virtual reality system, we quantified dynamic balance in people with PPPD and healthy controls in diverse visual conditions. Methods Twenty-two individuals with PPPD and 29 controls performed a square-shaped fast walking task (Four-Square Step Test Virtual Reality—FSST-VR) using a head-mounted-display (HTC Vive) under 3 visual conditions (empty train platform; people moving; people and trains moving). Head kinematics was used to measure task duration, movement smoothness and anterior–posterior (AP) and medio-lateral (ML) ranges of movement (ROM). Heart rate (HR) was monitored using a chest-band. Participants also completed a functional mobility test (Timed-Up-and-Go; TUG) and questionnaires measuring anxiety (State-Trait Anxiety Inventory; STAI), balance confidence (Activities-Specific Balance Confidence; ABC), perceived disability (Dizziness Handicap Inventory) and simulator sickness (Simulator Sickness Questionnaire). Main effects of visual load and group and associations between performance, functional and self-reported outcomes were examined. Results State anxiety and simulator sickness did not increase following testing. AP-ROM and HR increased with high visual load in both groups (p < 0.05). There were no significant between-group differences in head kinematics. In the high visual load conditions, high trait anxiety and longer TUG duration were moderately associated with reduced AP and ML-ROM in the PPPD group and low ABC and  high perceived disability were associated with reduced AP-ROM (|r| =  0.47 to 0.53; p < 0.05). In contrast, in controls high STAI-trait, low ABC and longer TUG duration were associated with increased AP-ROM (|r| = 0.38 to 0.46; p < 0.05) and longer TUG duration was associated with increased ML-ROM (r = 0.53, p < 0.01). Conclusions FSST-VR may shed light on movement strategies in PPPD beyond task duration. While no main effect of group was observed, the distinct associations with self-reported and functional outcomes, identified using spatial head kinematics, suggest that some people with PPPD reduce head degrees of freedom when performing a dynamic balance task. This supports a potential link between spatial perception and PPPD symptomatology.


2020 ◽  
Vol 181 ◽  
pp. 107438
Author(s):  
Amirmohammad Pasdar ◽  
Young Choon Lee ◽  
Khaled Almi’ani

2019 ◽  
Vol 9 (10) ◽  
pp. 2117
Author(s):  
Ming Chong Lim ◽  
Han-Lim Choi

Multi-agent task allocation is a well-studied field with many proven algorithms. In real-world applications, many tasks have complicated coupled relationships that affect the feasibility of some algorithms. In this paper, we leverage on the properties of potential games and introduce a scheduling algorithm to provide feasible solutions in allocation scenarios with complicated spatial and temporal dependence. Additionally, we propose the use of random sampling in a Distributed Stochastic Algorithm to enhance speed of convergence. We demonstrate the feasibility of such an approach in a simulated disaster relief operation and show that feasibly good results can be obtained when the confirmation and sample size requirements are properly selected.


Author(s):  
James L. Szalma ◽  
Joel S. Warm ◽  
Gerald Matthews ◽  
William N. Dember ◽  
Ernest M. Weiler ◽  
...  

2017 ◽  
Vol 36 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Ricardo Ferraz ◽  
Bruno Gonçalves ◽  
Roland Van Den Tillaar ◽  
Sergio Jiménez Sáiz ◽  
Jaime Sampaio ◽  
...  
Keyword(s):  

2001 ◽  
Vol 32 ◽  
pp. 1037-1038
Author(s):  
E. DEBRY ◽  
B. JOURDAIN ◽  
B. SPORTISSE

2008 ◽  
Vol 44-46 ◽  
pp. 595-600
Author(s):  
Xiao Ming Qian ◽  
Dun Bing Tang

In this paper a simulation algorithm for concurrent product development process (CPDP) is presented based on Design Structure Matrix (DSM). An aggregate DSM is used to model the CPDP. To simulate the influence on the process of the time limit and the resource competition, the schedule and resource model are established. A method is also advanced to handle task delay. At last a case is used to validate the simulation algorithm and to show the influence on the process of task duration and resource.


Sign in / Sign up

Export Citation Format

Share Document