Preparation, structures, photophysical properties and energy transfer mechanism of two novel samarium and thulium compounds

2020 ◽  
Vol 285 ◽  
pp. 121251
Author(s):  
Wen-Tong Chen
2020 ◽  
Vol 44 (5-6) ◽  
pp. 343-348
Author(s):  
Wen-Tong Chen

A hydrothermal reaction results in the formation of a novel [Pr2(2,5-PA)2(2,5-HPA)2(H2O)4] n·2 nH2O complex (2,5-H2PA = 2,5-pyridinedicarboxylic acid). The complex is structurally characterized by single-crystal X-ray diffraction and crystallizes in the space group P21 of the monoclinic system with two formula units in one cell. This praseodymium complex is characterized by a two-dimensional layered structure. A solid-state photoluminescence experiment reveals that the praseodymium complex shows an emission in the red region. The complex has Commission Internationale de I’Éclairage chromaticity coordinates of 0.5495 and 0.4492. The photoluminescence emission bands could be assigned to the characteristic emission of the 4 f electron intrashell transition of the 3 P0 → 3 H5, 1 D2 → 3 H4, 3 P0 → 3 H6, 3 P0 → 3 F2, and 3 P1 → 3 F3 of the Pr3+ ions. The energy transfer mechanism is explained by the energy level diagrams of the praseodymium ions and the 2,5-H2PA ligand. A solid-state diffuse reflectance measurement shows that the complex possesses a wide optical band gap of 3.48 eV.


2020 ◽  
Vol 49 (11) ◽  
pp. 2801-2809
Author(s):  
Sameer Albati ◽  
Mohammad Hafizuddin Hj. Jumali ◽  
Bandar Ali Al-Asbahi ◽  
Saif M.H. Qaid ◽  
Chi Chin Yap

2020 ◽  
Vol 44 (11-12) ◽  
pp. 727-732
Author(s):  
Wen-Tong Chen

A hydrothermal reaction leads to the formation of a novel erbium–mercury compound [Er(IA)3(H3O)(H2O)] n(0.5 nHg2I6) (1) (HIA = isonicotinic acid). The compound has been characterized by single-crystal X-ray diffraction. It is characteristic of a one-dimensional chain-like structure and a two-dimensional supramolecular layer. A solid-state photoluminescence experiment reveals that this compound displays upconversion green photoluminescence. The photoluminescence emission peaks can be attributed to the 4 G11/2 → 4 I15/2, 4 F7/2 → 4 I15/2, and 2 H11/2 → 4 I15/2 of the Er3+ ions. The energy transfer mechanism is consistent with the energy-level diagrams of the erbium ions and isonicotinic acid ligand. This compound possesses Commission Internationale de I'Éclairage chromaticity coordinates of 0.1755 and 0.5213. A solid-state diffuse reflectance measurement reveals that this compound features a narrow optical band gap of 1.97 eV.


2013 ◽  
Vol 142 ◽  
pp. 57-65 ◽  
Author(s):  
Bandar Ali Al-Asbahi ◽  
Mohammad Hafizuddin Haji Jumali ◽  
Chi Chin Yap ◽  
Moayad Husein Flaifel ◽  
Muhamad Mat Salleh

2017 ◽  
Vol 65 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Zhe Chen ◽  
Jiu-Hui Wu ◽  
A-Dan Ren ◽  
Xin Chen ◽  
Zhen Huang

2021 ◽  
pp. 118082
Author(s):  
Hai Ma ◽  
Xiaodan Wang ◽  
Feifei Chen ◽  
Jiafan Chen ◽  
Xionghui Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document