reflectance measurement
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 74)

H-INDEX

26
(FIVE YEARS 3)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Matías Jeldres ◽  
Norman Toro ◽  
Sandra Gallegos ◽  
Pedro Robles ◽  
Iván Salazar ◽  
...  

In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at a pH > 10.5, and raising the pH of seawater leads to magnesium precipitates that adversely affect subsequent tailings dewatering. Seawater pre-treatment with lime can precipitate the majority of magnesium present, with these solids then being removed by filtration. To understand how such treatment may aid tailings dewatering, treated seawater (TSw) was mixed with raw seawater (Rsw) at different ratios, analyzing the impact on the flocculated settling rate, aggregate size as measured by focused beam reflectance measurement (FBRM), and vane yield stress for two synthetic clay-based tailings. A higher proportion of Tsw (10 mg/L Mg2+) led to larger aggregates and higher settling rates at a fixed dosage, with FBRM suggesting that higher calcium concentrations in Tsw may also favor fines coagulation. The yield stress of concentrated suspensions formed after flocculation decreased with higher proportions of Tsw, a consequence of lower flocculant demand and the reduced presence of precipitates; while the latter is a minor phase by mass, their high impact on rheology reflects a small particle size. Reducing magnesium concentrations in seawater in advance of use in processing offers advantages in the water return from thickening and subsequent underflow transport. However, this may not require complete removal, with blending Tsw and Rsw an option to obtain acceptable industrial performance.


Author(s):  
Wenyuan Zhang ◽  
Haojun Xu ◽  
Binbin Pei ◽  
Xiaolong Wei ◽  
Pei Feng ◽  
...  

Abstract This work proposes a new plasma super-phase gradient metasurfaces (PS-PGMs) structure, owing to the limitations of the thin-layer plasma for electromagnetic wave attenuation. Based on the cross-shaped surface unit configuration, we have designed the X-band absorbing structure through the dispersion control method. By setting up the Drude dispersion model in the computer simulation technology, the designed phase gradient metasurfaces structure is superposed over the plasma, and the PS-PGMs structure is constructed. The electromagnetic scattering characteristics of the new structure have been simulated, and the reflectance measurement has been carried out to verify the absorbing effect. The results demonstrate that the attenuation effect of the new structure is superior to that of the pure plasma structure, which invokes an improved attenuation effect from the thin layer plasma, thus enhancing the feasibility of applying the plasma stealth technology to the local stealth of the strong scattering part of a combat aircraft.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4108
Author(s):  
Francisco Pulgar ◽  
Luis Ayala ◽  
Matías Jeldres ◽  
Pedro Robles ◽  
Pedro G. Toledo ◽  
...  

Seawater treated with lime and sodium carbonate in different proportions to reduce magnesium and calcium contents is used in flocculation and sedimentation tests of artificial quartz and kaolin tailings. Solid complexes were separated from water by vacuum filtration, and factors such as lime/sodium carbonate ratio, kaolin content, flocculation time, and flocculant dose are evaluated. The growth of the aggregates was captured in situ by a focused beam reflectance measurement (FBRM) probe. Solid magnesium and calcium complexes are formed in raw seawater at pH 11, impairing the performance of flocculant polymers based on polyacrylamides. The results show that the settling rate improved when the treatment’s lime/sodium carbonate ratio increased. That is, when a greater removal of magnesium is prioritized over calcium. The amount of magnesium required to be removed depends on the mineralogy of the system: more clay will require more significant removal of magnesium. These results respond to the structural changes of the flocs, achieving that the more magnesium is removed, the greater the size and density of the aggregates. In contrast, calcium removal does not significantly influence flocculant performance. The study suggests the necessary conditions for each type of tailing to maximize water recovery, contributing to the effective closure of the water cycle in processes that use seawater with magnesium control.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3871
Author(s):  
Courtney Moore ◽  
Weijue Gao ◽  
Pedram Fatehi

The radical polymerization of acid-washed and unwashed softwood kraft lignin with [2-(methacryloyloxy) ethyl] trimethylammonium chloride (METAC) was attempted to investigate the production of lignin-based flocculants for simulated wastewater. The incorporation of METAC onto lignin resulted in a cationic charge density (2.3–3.3 meq/g), increased water solubility (89–96% in neutral pH), and increased molecular weight (70,000–210,000 g/mol) of lignin. The lignin–METAC polymers generated from acid-washed lignin had higher molecular weights than those generated from unwashed lignin. The lignin–METAC polymers showed lower resistance to thermal decomposition than unmodified lignin due to the inclusion of PolyMETAC. The unmodified acid-washed lignin samples did not significantly affect the COD of the wastewater, while the unmodified unwashed lignin samples contributed to the COD, implying that unmodified lignin was not suitable for wastewater treatment. The flocculation of wastewater with lignin–METAC led to the chemical oxygen demand (COD) reduction of 17–23% and total organic carbon (TOC) drop of 51–60%. The lignin–METAC polymer with the highest molecular weight (produced from acid-washed lignin) reached the highest COD removal, while lignin–METAC polymer with the highest charge density (produced from unwashed lignin) reached the highest TOC removal. Focused beam reflectance measurement (FBRM) studies revealed that the lignin–METAC polymer produced from acid-washed lignin with a high molecular weight generated larger and more flocs in wastewater than the lignin–METAC polymer produced from unwashed lignin. The comparison of theoretical and experimental dosages required for neutralizing the charges of wastewater demonstrated that charge neutralization was the main flocculation mechanism, although a bridging mechanism was also involved for component removals from wastewater. The use of 1 mg/L of alum along with 65 mg/L lignin–METAC in a dual coagulation–flocculation system led to higher average phosphorous (42%) and COD (44%) removals than the singular flocculation system only using 65 mg/L of lignin–METAC (with phosphorous removals of 3.4% and COD removals of 18.7%). However, lignin–METAC flocculant slightly increased the ammonia–nitrogen content in both singular flocculation and dual coagulation–flocculation systems due to the residual ammonia content of lignin–METAC. The coagulation–flocculation system determined that the use of lignin–METAC (65 mg/L) could reduce the alum dosage significantly while maintaining a similar organic content reduction of 44% for wastewater.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Jobayer Hossain ◽  
Mengdi Sun ◽  
Gregory Doerk ◽  
Pieter G. Kik ◽  
Kristopher O. Davis

Abstract This work reports the fabrication and characterization of multifunctional, nanostructured passivation layers formed using a self-assembly process that provide both surface passivation and improved light trapping in crystalline silicon photovoltaic (PV) cells. Scalable block copolymer self-assembly and vapor phase infiltration processes are used to form arrays of aluminum oxide nanostructures (Al2O3) on crystalline silicon without substrate etching. The Al2O3 nanostructures are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopic ellipsometry. Injection-level dependent photoconductance measurements are used to determine the effective carrier lifetime of the samples to confirm the nanostructures successfully passivate the Si surface. Finite element method simulations and reflectance measurement show that the nanostructures increase the internal rear reflectance of the PV cell by suppressing the parasitic optical losses in the metal contact. An optimized morphology of the structures is identified for their potential use in PV cells as multifunctional materials providing surface passivation, photon management, and carrier transport pathways.


2021 ◽  
Author(s):  
Jiao Bai ◽  
Jingwen Li ◽  
Gaopeng Xue ◽  
Xiaohao Wang ◽  
Qian Zhou ◽  
...  

2021 ◽  
Vol 21 (10) ◽  
pp. 5329-5336
Author(s):  
Hongjun Chen ◽  
Zeyang Xue ◽  
Chunhu Yu ◽  
Yajing Mao ◽  
Fanglv Qiu ◽  
...  

Vanadium doped lanthanum bismuthate nanorods with vanadium ratio of 1%, 3%, 5% and 10 wt.% were fabricated through the hydrothermal method using sodium orthovanadate as vanadium source. Vanadium doped lanthanum bismuthate nanorod products were analyzed by scanning electron microscopy, X-ray diffraction pattern and diffuse reflection spectrum. X-ray diffraction patterns show that vanadium in the vanadium doped lanthanum bismuthate nanorods exists as triclinic Bi23V4O44.5 and monoclinic LaVO4 phases. Scanning electron microscopy observations show that the size and micro-morphology of the vanadium doped products are closely relative to the vanadium mass ratio. The length of the vanadium doped nanorods decreases and the morphology changes from nanorods to irregular nanoparticles with increasing the vanadium mass ratio. Solid UV-vis diffuse reflectance measurement shows that the bandgap value of the doped lanthanum bismuthate nanorods is narrowed from 2.37 eV to 2.25 eV after the vanadium doping ratio is increased from 1% to 10%. The doped lanthanum bismuthate nanorods illustrate enhanced photocatalytic performance for methylene orange (MO) removal with the irradiation of sunlight. The catalytic performance for MO removal depends on the irradiation time, vanadium content and dosage of the nanorods. The doped lanthanum bismuthate nanorods with the vanadium mass ratio of 10% possess the best MO catalytic degradation performance.


Sign in / Sign up

Export Citation Format

Share Document