energy transfer mechanism
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 130)

H-INDEX

35
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Guangfu Li ◽  
Dongjiao Jiang ◽  
Guogang Shan ◽  
Weilin Song ◽  
Jialin Tong ◽  
...  

2021 ◽  
Author(s):  
Krishna Bera ◽  
Chintam Hanmandlu ◽  
Hung-I Lin ◽  
Rapti Ghosh ◽  
Vijay Kumar Gudelli ◽  
...  

Abstract Recently emerged metal-halide hybrid perovskite (MHP) possesses superb optoelectronic features, which have great attention in solid-state lighting, photodetection, and photovoltaic applications. Because of its excellent external quantum efficiency, MHP acquires enormous potential for manifestation of ultra-low threshold optically pumped laser. However, demonstration of electrical-driven laser remains a challenge because of vulnerable degradation of perovskite, limited exciton binding energy, and intensity quenching and efficiency drop by non-radiative recombinations. In this work, we observed an ultralow-threshold (~ 18 nJcm−2) optically pumped Fabry-Perot (F-P) laser from moisture insensitive mixed dimensional quasi-2D Rudlesden-Popper phase perovskite (RPP) microplates. Unprecedently, we demonstrated electrical-driven F-P laser with threshold ~ 0.15 Acm−2 from quasi-2D RPP by judicious combination of perovskite/hole transport layer (HTL) and electron transport layer (ETL) having suitable band alignment and thickness. Additionally, we showed tunibility of lasing modes by driving external electrical potential. Ultralow-threshold lasing is mainly ascribed by existence of F-P feedback resonance inside RPP microplate, and selective resonance energy transfer mechanism in-between microplates. Performing the finite difference time domain (FDTD) simulations, we confirmed the presence of F-P feedback resonance, and light trapping effect at perovskite/ETL contributing to laser action. Our discovery of electrical-driven laser from MHP opens an alternative avenue in developing optoelectronics.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6782
Author(s):  
Hadil Benrejeb ◽  
Kevin Soler-Carracedo ◽  
Antonio Diego Lozano-Gorrín ◽  
Sana Hraiech ◽  
Inocencio Rafael Martin Benenzuela

Detailed optical properties of Tb3+-Yb3+ co-doped phosphate glasses were performed based on their emission spectra and decay measurements. Under blue excitation of Tb3+ at 488 nm, the intensity of Yb3+ emissions gradually enhanced upon increasing the Yb3+ content until 1 mol% indicated an energy transfer from Tb3+ to Yb3+. Otherwise, under near infrared excitation of Yb3+ at 980 nm, these glasses exhibit intense green luminescence, which led to cooperative sensitization of the 5D4 level of Tb3+ ions. A cooperative energy transfer mechanism was proposed on the basis of the study on the influence of Yb3+ concentration on up-conversion emission intensity, as well as the dependence of this up-conversion intensity on near infrared excitation power. Moreover, the temporal evolution of the up-conversion emissions have been studied, which was in positive agreement with a theoretical model of cooperative up-conversion luminescence that showed a temporal emission curve with rise and decay times of the involved levels.


2021 ◽  
Author(s):  
Keisuke Kawakami ◽  
Tasuku Hamaguchi ◽  
Yuu Hirose ◽  
Daisuke Kosumi ◽  
Makoto Miyata ◽  
...  

Cyanobacteria, glaucophytes, and rhodophytes utilize giant, light-harvesting phycobilisomes (PBSs) for capturing solar energy and conveying it to photosynthetic reaction centers. PBSs are compositionally and structurally diverse, and exceedingly complex, all of which pose a challenge for a comprehensive understanding of their function. To date, three detailed architectures of PBSs by cryo-electron microscopy (cryo-EM) have been described: a hemiellipsoidal type, a block-type from rhodophytes, and a cyanobacterial hemidiscoidal-type. Here, we report cryo-EM structures of a pentacylindrical allophycocyanin core and phycocyanin-containing rod of a thermophilic cyanobacterial hemidiscoidal PBS. The structures define the spatial arrangement of protein subunits and chromophores, crucial for deciphering the energy transfer mechanism. They reveal how the pentacylindrical core is formed, identify key interactions between linker proteins and the bilin chromophores, and indicate pathways for unidirectional energy transfer.


2021 ◽  
Author(s):  
Yoel Negrín-Montecelo ◽  
Xiang-Tian Kong ◽  
Lucas Besteiro ◽  
Enrique Carbo-Argibay ◽  
Zhiming Wang ◽  
...  

Important efforts are currently under way in order to implement plasmonic phenomena in the growing field of photocatalysis, striving for improved efficiency and reaction selectivity. A significant fraction of such efforts have been focused on distinguishing, understanding and enhancing specific energy transfer mechanisms from plasmonic nanostructures to their environment. Herein we report a synthetic strategy that brings together two of the main physical mechanisms driving plasmonic photocatalysis into an engineered system by rationally combining the photochemical features of energetic charge carriers and the electromagnetic field enhancement inherent to the plasmonic excitation. We do so by creating hybrid photocatalysts that integrate multiple plasmonic resonators in a single entity, controlling their joint contribution through spectral separation and differential surface functionalization. This strategy allows us to study the combination of different photosensitization mechanisms when activated simultaneously. Our results show that hot electron injection can be combined with an energy transfer process mediated by near-field interaction, leading to a significant increase of the final photocatalytic response of the material. In this manner, we overcome the limitations that hinder photocatalysis driven only by a single energy transfer mechanism, and move the field of plasmonic photocatalysis closer to energy-efficient applications. Furthermore, our multimodal hybrids offer a test system to probe the properties of the two targeted mechanisms and open the door to wavelength-selective photocatalysis and novel tandem reactions.


Author(s):  
Dylan Rubini ◽  
Liping Xu ◽  
Budimir Rosic ◽  
Harri Johannesdahl

Abstract Decarbonising highly energy-intensive industrial processes is imperative if nations are to comply with 2050 greenhouse gas emissions. This is a significant challenge for high-temperature industrial processes, such as hydrocarbon cracking, and there have been limited developments thus far. The novel concept presented in this study aims to replace the radiant section of a hydrocarbon cracking plant with a novel turbo-reactor. Rather than using heat from the combustion of natural gas, the novel turbo-reactor can be driven by an electric motor powered by renewable electricity. Switching the fundamental energy transfer mechanism from surface heat exchange to mechanical energy transfer significantly increases the exergy efficiency of the process. Theoretical analysis and numerical simulations show that the ultra-high aerodynamic loading rotor is able to impart substantial mechanical energy into the feedstock without excess temperature difference and metal temperature magnitude. The required enthalpy rise can be supplied within a reactor volume 500 times smaller than that for a conventional furnace. A significantly lower wall surface temperature, supersonic gas velocities and a shorter primary gas path enable a controlled reduction in the residence time for chemical reactions, which optimises the yield. For the same reasons the conditions for coke deposition on the turbo-reactor surfaces are unfavourable, leading to an increase in plant availability. This study demonstrates that the mechanical work input into the feedstock can be dissipated through an intense turbulent mixing process which maintains an ideal and controlled pressure level for cracking.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2629
Author(s):  
Despoina Tselekidou ◽  
Kyparisis Papadopoulos ◽  
Vasileios Kyriazopoulos ◽  
Konstantinos C. Andrikopoulos ◽  
Aikaterini K. Andreopoulou ◽  
...  

In this study, novel copolymers consisting of blue and red chromophores are presented to induce emission tuning, enabling the definition of white light emission in a single polymeric layer. These aromatic polyether sulfones exhibit high molecular weights, excellent solubility and processability via solution deposition techniques. In addition, by carefully controlling the molar ratios of chromophores composition, the energy transfer mechanism, from blue to red chromophores, takes place enabling us to define properly the emission covering the entire range of the visible spectrum. The optical and photophysical properties of the monomers and copolymers were thoroughly investigated via NIR-Vis-far UV Spectroscopic Ellipsometry (SE), Absorbance and Photoluminescence (PL). These copolymers are used as an emissive layer and applied in solution-processed WOLED devices. The fabricated WOLED devices have been subsequently studied and characterized in terms of their electroluminescence properties. Finally, the WOLED devices possess high color stability and demonstrate CIE Coordinates (0.33, 0.38), which approach closely the pure white light CIE coordinates.


Sign in / Sign up

Export Citation Format

Share Document