Cerebral Aspergillosis in a Diabetic Patient Leading to Cerebral Artery Occlusion and Ischemic Stroke: A Case Report and Literature Review

2015 ◽  
Vol 24 (1) ◽  
pp. e39-e43 ◽  
Author(s):  
Wentao Li ◽  
Neelofer Shafi ◽  
Ramayee Periakaruppan ◽  
Tibor Valyi-Nagy ◽  
John Groth ◽  
...  
2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


2021 ◽  
Author(s):  
Mitch Paro ◽  
Daylin Gamiotea Turro ◽  
Leslie Blumenfeld ◽  
Ketan R Bulsara ◽  
Rajkumar Verma

Background and Purpose: No effective treatment is available for most patients who suffer ischemic stroke. Development of novel treatment options is imperative. The brain attempts to self-heal after ischemic stroke via various mechanism mediated by restored blood circulation in affected region of brain but this process is limited by inadequate angiogenesis or neoangiogenesis. Encephalomyosynangiosis (EMS) is a neurosurgical procedure that achieves angiogenesis with low morbidity in patients with moyamoya disease, reducing risk of stroke. However, EMS, surgery has never been studied as an therapeutic option after ischemic stroke. Here we described a novel procedure and feasibility data for EMS after ischemic stroke in mice. Methods: A 60 mins of middle cerebral artery occlusion (MCAo) was used to induce ischemic stroke in mice. After 3-4 hours of MCAo onset/sham, EMS was performed. Mortality of EMS, MCAo and. MCAo+EMS mice was recorded up to 21 days after surgery. Graft tissue viability was measured using a nicotinamide adenine dinucleotide reduced tetrazolium reductase assay. Results: EMS surgery after ischemic stroke does not increase mortality compared to stroke alone. Graft muscle tissue remained viable 21 days after surgery. Conclusions: This novel protocol is effective and well-tolerated, may serve as novel platform for new angiogenesis and thus recovery after ischemic stroke. If successful in mice, EMS can a very feasible and novel treatment option for ischemic stroke in humans.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Terrance Chiang ◽  
Sean Harvey ◽  
Arjun V Pendharkar ◽  
Michelle Y Cheng ◽  
Gary K Steinberg

Introduction: Manual scoring of behavior tests is commonly used for assessing motor deficits after stroke, however, it is labor intensive and subject to bias. These limitations lead to inconsistent assessment between research groups and non-reproducible data. In this study, we investigated the feasibility of an automated motor deficit assessment system, Erasmus ladder, in two ischemic stroke models. Methods: Distal middle cerebral artery occlusion (dMCAO n=10) or transient middle cerebral artery occlusion (tMCAO 30 minutes, n=15) were performed on male C57BL6J mice (11-13 weeks) to generate cortical ischemic stroke, with. Naïve mice (n=10) were used as controls. Immunohistochemistry was performed on brains collected at post-stroke day (PD) 30 to assess for infarct size (MAP2) and inflammation (CD68). Mice without infarct in both cortex and striatum were excluded from the study. Behavior was assessed using Erasmus ladder at pre-stroke baseline (4 unperturbed and 4 perturbed sessions) and on PD 7, 14, 21, and 28 (all perturbed sessions). Results: Erasmus ladder detected significant motor deficits in the tMCAO model, specifically in the pre- and post- perturbed times as well as several key step types (HH long). Analyses in the tMCAO model reveal changes in various step patterns and their capability to react to the perturbation (obstacle). These significant motor deficits after tMCAO were detectable until PD28. We also observed a sustained decline in the use of affected limb compared to unaffected limb until PD28. While this trend is also present in dMCAO model, motor deficits were detected in the dMCAO only at early timepoints (PD7) and the difference subsided by PD28. Conclusion: We have assessed the data collected by Erasmus ladder on mice that underwent two commonly used stroke models (tMCAO and dMCAO). Our data showed that Erasmus ladder can detect long term motor deficit including reduced use of affected limb, step pattern, and motor reaction to obstacle. This automated instrument is effective in detecting motor deficits in the tMCAO model and thus, can be used to evaluate treatments for enhancing recovery after stroke.


2019 ◽  
Author(s):  
Shang Kai ◽  
Xiaoxing Zhang ◽  
Yuehua Li

Abstract Background The capillary index score (CIS) determined from DSA is used to evaluate cerebral collateral flow in acute ischemic stroke (AIS) caused by cerebral artery occlusion. Our aim was to determine the reliability of CIS calculated from MIP-CTA images as an alternative to DSA-based CIS, as CTA is less invasive and less expensive. Methods Clinical and imaging data of 40 patients with AIS caused by cerebral artery occlusion within 6 h from symptom onset were collected. CIS was calculated from CTA and DSA images. Patients were classified into the favorable collateral flow group if CIS was ≥2 (fCIS), and into the poor collateral flow group if CIS was <2 (pCIS). Agreement between the methods was evaluated using the Kappa test. Logistic regression was performed to explore the relationship between CTA-based CIS and clinical outcomes. Results The two methods had high consistency (Kappa = 0.72), and the diagnostic accuracy of CTA for CIS classification was 87.5%. The decrease in the NIHSS score at discharge was not significantly different between the fCIS and pCIS groups according to CTA (p = 0.156), while the 90-day mRS was higher in the pCIS group (p = 0.04). High CTA-based CIS and low blood glucose at admission were significantly correlated with good outcome. Conclusion CIS calculated using CTA is as reliable as DSA-based CIS for assessing collateral flow in AIS, and is also a good predictor of clinical outcome. This index could be useful for guiding patient selection and treatment strategies for AIS.


Sign in / Sign up

Export Citation Format

Share Document