Measurement of Cerebrovascular Reactivity as Blood Oxygen Level-Dependent Magnetic Resonance Imaging Signal Response to a Hypercapnic Stimulus in Mechanically Ventilated Patients

2018 ◽  
Vol 27 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Lashmi Venkatraghavan ◽  
Julien Poublanc ◽  
Jay S. Han ◽  
Olivia Sobczyk ◽  
Casey Rozen ◽  
...  
2016 ◽  
Vol 77 (2) ◽  
pp. 806-813 ◽  
Author(s):  
Jorn Fierstra ◽  
Jan-Karl Burkhardt ◽  
Christiaan Hendrik Bas van Niftrik ◽  
Marco Piccirelli ◽  
Athina Pangalu ◽  
...  

Hypertension ◽  
2011 ◽  
Vol 58 (6) ◽  
pp. 1066-1072 ◽  
Author(s):  
Monika L. Gloviczki ◽  
James F. Glockner ◽  
John A. Crane ◽  
Michael A. McKusick ◽  
Sanjay Misra ◽  
...  

2016 ◽  
Vol 36 (12) ◽  
pp. 2177-2193 ◽  
Author(s):  
Cornelia Helbing ◽  
Marta Brocka ◽  
Thomas Scherf ◽  
Michael T Lippert ◽  
Frank Angenstein

Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses.


2016 ◽  
Vol 42 (3-4) ◽  
pp. 288-307 ◽  
Author(s):  
Diederik P.J. Smeeing ◽  
Jeroen Hendrikse ◽  
Esben T. Petersen ◽  
Manus J. Donahue ◽  
Jill B. de Vis

Background: The cerebrovascular reactivity (CVR) results of blood oxygen level-dependent (BOLD) and arterial spin labeling (ASL) MRI studies performed in patients with cerebrovascular disease (steno-occlusive vascular disease or stroke) were systematically reviewed. Summary: Thirty-one articles were included. Twenty-three (74.2%) studies used BOLD MRI to evaluate the CVR, 4 (12.9%) studies used ASL MRI and 4 (12.9%) studies used both BOLD and ASL MRI. Thirteen studies (3 significant) found a lower BOLD CVR, 2 studies found a similar CVR and 3 studies found a higher CVR in the ipsilateral compared to the contralateral hemisphere. Nine (5 significant) out of 10 studies found a lower BOLD CVR in the ipsilateral hemispheres of patients compared to controls. Six studies (2 significant) found a lower ASL CVR in the ipsilateral compared to the contralateral hemispheres. Three out of 5 studies found a significant lower ASL CVR in the ipsilateral hemispheres of patients compared to controls. Key Messages: This review brings support for a reduced BOLD and ASL CVR in the ipsilateral hemisphere of patients with cerebrovascular disease. We suggest that future studies will be performed in a uniform way so reference values can be established and could be used to guide treatment decisions in patients with cerebrovascular disease.


Sign in / Sign up

Export Citation Format

Share Document