A new segmentation approach for sound propagation in non-uniform lined ducts with mean flow

2011 ◽  
Vol 330 (10) ◽  
pp. 2369-2387 ◽  
Author(s):  
Xiaoyu Wang ◽  
Xiaofeng Sun
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 768-773 ◽  
Author(s):  
Yusuf Ozyoruk ◽  
Lyle N. Long

2000 ◽  
Author(s):  
Alex Povitsky

Abstract In this study we consider one method of parallelization of implicit numerical schemes on multiprocessor systems. Then, the parallel high-order compact numerical algorithm is applied to physics of amplification of sound waves in a non-uniform mean flow. Due to the pipelined nature of this algorithm, its efficient parallelization is based on scheduling of processors for other computational tasks while otherwise the processors stay idle. In turn, the proposed scheduling algorithm is taken as a special case of the general shop scheduling problem and possible extentions and generalizations of the proposed scheduling methodology are discussed. Numerical results are discussed in terms of baroclinic generation of wave-associated vorticity that appear to be a key process in energy transfer between a non-uniform mean flow and a propagating disturbance. The discovered phenomenon leads to significant amplification of sound waves and controls the direction of sound propagation.


2009 ◽  
Vol 17 (04) ◽  
pp. 383-402 ◽  
Author(s):  
RONGXIN ZHANG ◽  
GUOLIANG QIN ◽  
CHANGYUN ZHU

A Chebyshev spectral element approximation of acoustic propagation problems based on linearized Euler equations is introduced, and the numerical approach is based on spectral elements in space with first-order Clayton–Engquist–Majda absorbing boundary conditions and implicit Newmark method in time. An initial perturbation problem has been solved to test the accuracy and stability of the numerical method. Then the sound propagation by source terms is also studied, including the radiation of a monopole and dipolar source in both stationary medium and uniform mean flow. The numerical simulation leads to good results in both accuracy and stability. Compared with the analytical solutions, the numerical results show the advantages in spectral accuracy even with relatively fewer grid points. Moreover, the implicit Newmark method in time marching also presents its superiority in stability. Finally, a problem of sound propagation in pipes is simulated as well.


2014 ◽  
Vol 6 ◽  
pp. 537935 ◽  
Author(s):  
E. M. Sánchez-Orgaz ◽  
F. D. Denia ◽  
J. Martínez-Casas ◽  
L. Baeza

A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand, the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss.


2020 ◽  
Vol 19 (6-8) ◽  
pp. 324-346
Author(s):  
Imran Bashir ◽  
Michael Carley

Low-cost airlines have significantly increased air transport, thus an increase in aviation noise. Therefore, predicting aircraft noise is an important component for designing an aircraft to reduce its impact on environmental noise along with the cost of testing and certification. The aim of this work is to develop a three-dimensional Boundary Element Method (BEM), which can predict the sound propagation and scattering over metamaterials and metasurfaces in mean flow. A methodology for the implementation of metamaterials and metasurfaces in BEM as an impedance patch is presented here. A three-dimensional BEM named as BEM3D has been developed to solve the aero-acoustics problems, which incorporates the Fast Multipole Method to solve large scale acoustics problems, Taylor’s transformation to account for uniform and non-uniform mean flow, impedance and non-local boundary conditions for the implementation of metamaterials. To validate BEM3D, the predictions have been benchmarked against the Finite Element Method (FEM) simulations and experimental data. It has been concluded that for no flow case BEM3D gives identical acoustics potential values against benchmarked FEM (COMSOL) predictions. For Mach number of 0.1, the BEM3D and FEM (COMSOL) predictions show small differences. The difference between BEM3D and FEM (COMSOL) predictions increases further for higher Mach number of 0.2 and 0.3. The increase in difference with Mach number is because Taylor’s Transformation gives an approximate solution for the boundary integral equation. Nevertheless, it has been concluded that Taylor’s transformation gives reasonable predictions for low Mach number of up to 0.3. BEM3D predictions have been validated against experimental data on a flat plate and a duct. Very good agreement has been found between the measured data and BEM3D predictions for sound propagation without and with the mean flow at low Mach number.


2007 ◽  
Vol 122 (1) ◽  
pp. 280-290 ◽  
Author(s):  
WenPing Bi ◽  
Vincent Pagneux ◽  
Denis Lafarge ◽  
Yves Aurégan

Sign in / Sign up

Export Citation Format

Share Document