A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy

2016 ◽  
Vol 360 ◽  
pp. 277-299 ◽  
Author(s):  
Yongbo Li ◽  
Minqiang Xu ◽  
Rixin Wang ◽  
Wenhu Huang
2018 ◽  
Vol 37 (4) ◽  
pp. 928-954 ◽  
Author(s):  
Jun Ma ◽  
Jiande Wu ◽  
Xiaodong Wang

Rolling bearing is one of the most crucial components in rotating machinery and due to their critical role, it is of great importance to monitor their operation conditions. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. Therefore, signal denoising preprocessing has become an essential part of condition monitoring and fault diagnosis. In the present study, a hybrid fault diagnosis method based on singular value difference spectrum denoising and local mean decomposition for rolling bearing is proposed. First, as a denoising preprocessing method, singular value difference spectrum denoising is applied to reduce the noise of the bearing vibration signal and improve the signal-to-noise ratio. Then, local mean decomposition method is used to decompose the denoised signals into several product functions. And product functions corresponding to the fault feature are selected according to the correlation coefficient criterion. Finally, Teager energy spectrum is analyzed by applying the Teager energy operator to the constructed amplitude modulation component. The proposed method is successfully applied to analyze the vibration signals collected from an experimental motive rolling bearing and rolling bearing of the self-made rotor experimental platform. The experimental results demonstrate that the proposed singular value difference spectrum denoising and local mean decomposition method can achieve fairly or slightly better performance than the normal local mean decomposition-Teager energy operator method, fast kurtogram, and the wavelet denoising and local mean decomposition method.


2013 ◽  
Vol 300-301 ◽  
pp. 714-720 ◽  
Author(s):  
Xing Zhi Liao ◽  
Zhou Wan ◽  
Yi Yang Li ◽  
Li Cheng

For a problem of mode mixing occurs in implementation process of local mean decomposition (LMD) method, an analytical method based on ensemble local mean decomposition (ELMD) and neural network is proposed to apply to fault diagnosis of rolling bearing, the vibrational signal of rolling bearing is decomposed into a series of product functions(PF) by ELMD method. The PF components which contain main fault information are selected to perform a further analysis. The kurtosis coefficient and energy characteristic parameters extracted from these PF components can be used as the input parameters of the neural network to identify the working status and fault types of rolling bearing. Through the analysis of rolling bearing with fault-free, inner-race fault and outer-race fault, the results indicate that the method based on ELMD and neural network has a higher failure recognition rate than the method based on wavelet packet analysis and neural network, and the working status and fault types of rolling bearing can be identified accurately and effectively.


2013 ◽  
Vol 819 ◽  
pp. 155-159
Author(s):  
Peng Wang ◽  
Huai Xiang Ma

Fault diagnosis of train bearing is an important method to ensure the security of railway. The key to the fault diagnosis is the method of vibration signal demodulation. The local mean decomposition (LMD) is a self-adapted signal processing method which has a good performance in nonlinear nonstationary signal demodulation. The improved LMD method based on kurtosis criterion can prevent errors in the process of calculating the product functions. With the verification of simulation and wheel set experiment, the improvement method has been certified usefully in practical application.


2014 ◽  
Vol 1014 ◽  
pp. 510-515 ◽  
Author(s):  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Shu Guo ◽  
Min Gou ◽  
...  

The time-domain energy message conveyed by vibration signals of different gear fault are different, so a method based on local mean decomposition (LMD) and variable predictive model-based class discriminate (VPMCD) is proposed to diagnose gear fault model. The vibration signal of gear which is the research object in this paper is decomposed into a series of product functions (PF) by LMD method. Then a further analysis is to select the PF components which contain main fault information of gear, the energy feature parameters of the selected PF components are used to form a fault feature vector. The variable predictive model-based class discriminate is a new multivariate classification approach for pattern recognition, through taking fully advantages of the fault feature vector. Finally, gear fault diagnosis is distinguished into normal state, inner race fault and outer race fault. The results show that LMD method can decompose a complex non-stationary signal into a number of PF components whose frequency is from high to low. And the method based on LMD and VPMCD has a high fault recognition function by analyzing the fault feature vector of PF.


2013 ◽  
Vol 683 ◽  
pp. 899-902
Author(s):  
Qiang Pan ◽  
Deng Hong Xiao ◽  
Tian He

In present paper, the effectiveness of local mean decomposition (LMD) method to signals of fault gears, which are multi-component amplitude modulated and frequency modulated, is demonstrated. A series of tests on wearing and broken tooth of gears are conducted. And the fault characteristics extracted by Fourier transform, Hilbert transform and LMD are compared. The results validate that LMD method is an effective way to extract the characteristics of fault gears and improve the accuracy of fault diagnosis of gears since it is able to reduce effect of false components.


Sign in / Sign up

Export Citation Format

Share Document