Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

2016 ◽  
Vol 377 ◽  
pp. 302-330 ◽  
Author(s):  
C. Mishra ◽  
A.K. Samantaray ◽  
G. Chakraborty
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Weigang Wen ◽  
Zhaoyan Fan ◽  
Donald Karg ◽  
Weidong Cheng

Nonlinear characteristics are ubiquitous in the vibration signals produced by rolling element bearings. Fractal dimensions are effective tools to illustrate nonlinearity. This paper proposes a new approach based on Multiscale General Fractal Dimensions (MGFDs) to realize fault diagnosis of rolling element bearings, which are robust to the effects of variation in operating conditions. The vibration signals of bearing are analyzed to extract the general fractal dimensions in multiscales, which are in turn utilized to construct a feature space to identify fault pattern. Finally, bearing faults are revealed by pattern recognition. Case studies are carried out to evaluate the validity and accuracy of the approach. It is verified that this approach is effective for fault diagnosis of rolling element bearings under various operating conditions via experiment and data analysis.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 26 ◽  
Author(s):  
Ning Wang ◽  
Zhipeng Wang ◽  
Limin Jia ◽  
Yong Qin ◽  
Xinan Chen ◽  
...  

Bearings are vital components in industrial machines. Diagnosing the fault of rolling element bearings and ensuring normal operation is essential. However, the faults of rolling element bearings under variable conditions and the adaptive feature selection has rarely been discussed until now. Thus, it is essential to develop a practicable method to put forward the disposal of the fault under variable conditions. Considering these issues, this paper uses the method based on the Mahalanobis Taguchi System (MTS), and overcomes two shortcomings of MTS: (1) MTS is an effective tool to classify faults and has strong robustness to operating conditions, but it can only handle binary classification problems, and this paper constructs the multiclass measurement scale to deal with multi-classification problems. (2) MTS can determine important features, but uses the hard threshold to select the features, and this paper selects the proper feature sequence instead of the threshold to overcome the lesser adaptivity of the threshold configuration for signal-to-noise gain. Hence, this method proposes a novel method named adaptive Multiclass Mahalanobis Taguchi system (aMMTS), in conjunction with variational mode decomposition (VMD) and singular value decomposition (SVD), and is employed to diagnose the faults under the variable conditions. Finally, this method is verified by using the signal data collected from Case Western Reserve University Bearing Data Center. The result shows that it is accurate for bearings fault diagnosis under variable conditions.


Sign in / Sign up

Export Citation Format

Share Document