scholarly journals Explicit dynamic response of damaged beams with application to uncertain and identification problems

2020 ◽  
Vol 487 ◽  
pp. 115608
Author(s):  
F. Cannizzaro ◽  
N. Impollonia ◽  
S. Caddemi ◽  
I. Caliò
Author(s):  
Michael J. Leamy

This article presents an efficient explicit dynamic formulation for modeling curved and twisted Carbon Nanotubes (CNT’s) based on a recently-developed intrinsic beam description (i.e. the dynamic state given by curvatures, strains, and velocities only) [Hodges, 2003] together with a finite element discretization incorporating atomistic potentials. This approach offers several advantages primarily related to the model’s computational efficiency: 1) the resulting partial differential equations governing motion are in first-order form (i.e. have first-order time derivatives only), 2) the system nonlinearities appear at low order, 3) the intrinsic description incorporating curvature allows low-order interpolation functions to describe generally curved and twisted nanotube centerlines, 4) inter-element displacements, slopes, and curvatures are matched at the element boundaries, and 5) finite rotational variables are absent, along with their inherit complexities. In addition, the developed model and finite element discretization are able to capture the nanotube’s dynamic response, without the expense of calculating the dynamic response of individual atoms as per Molecular Dynamics models. Simulation results are presented which illustrate the dynamic response of a typical CNT to axial, bending, and torsional loading. Results from the simulations are compared to similar results available in the literature, and close agreement is documented.


Author(s):  
Seetha Ramudu Kummari ◽  
Phillip E. Prueter ◽  
Michael F. P. Bifano

The dynamic response of storage tanks subjected to seismic loading is complex. Analyzing the structural response of a tank is not only dependent on accurately modeling the major design features and simulating the seismic loading, but also the sloshing of the fluid contained within the tank can affect the overall behavior and likely failure modes. Advanced dynamic simulation techniques, such as the ones discussed herein, permit comparison between these closed-form methods and computational predictions; that is, any potential conservatism or lack thereof associated with traditional design by rule methodologies can be identified using computational analysis. Additionally, for tanks that were not originally designed to a modern Code or recommended practice that includes consideration for seismic loading, the computational analysis methods discussed in this study offer a means to evaluate the structural integrity of vintage tanks under seismic loading conditions that are still in service today. This paper discusses explicit dynamic finite element analysis (FEA) techniques to simulate seismic loading on a large, aboveground, in-service Ammonia storage tank that carries a high consequence of failure. The fluid-structure interaction and sloshing behavior of the contained fluid are directly accounted for. Commentary on using smooth particle hydrodynamics (SPH), coupled Eulerian-Lagrangian (CEL), and computational fluid dynamics (CFD) analysis techniques is provided. The underlying methodology behind these simulation techniques is discussed, and the overall dynamic response of the tank is investigated. The results from the explicit dynamic seismic simulations are compared with the current seismic design guidance provided in API 650 [1] and equivalent static simulation techniques (documented in Part I of this study [2]). Furthermore, this case study highlights a practical application where advanced analysis is employed to investigate a real-life fluid-structure interaction problem.


Author(s):  
Edward Seckel ◽  
Ian A. M. Hall ◽  
Duane T. McRuer ◽  
David H. Weir
Keyword(s):  

1991 ◽  
Vol 1 (1) ◽  
pp. 63-77 ◽  
Author(s):  
M. Nifle ◽  
H. J. Hilhorst

1992 ◽  
Vol 2 (10) ◽  
pp. 1803-1809
Author(s):  
V. K. Dolganov ◽  
G. Heppke ◽  
H.-S. Kitzerow

1985 ◽  
Vol 46 (C5) ◽  
pp. C5-331-C5-341 ◽  
Author(s):  
Z. Rosenberg ◽  
Y. Yeshurun ◽  
D. G. Brandon

1988 ◽  
Vol 49 (C2) ◽  
pp. C2-161-C2-164
Author(s):  
H. A. MacKENZIE ◽  
J. YOUNG ◽  
A. ILTAIF ◽  
J. HUGHES

Sign in / Sign up

Export Citation Format

Share Document