blue phase
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 135)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Vol 124 ◽  
pp. 111977
Author(s):  
Congcong Luo ◽  
Yingying Chen ◽  
Fang Chen ◽  
Honghua Xu ◽  
Qingwei Xie ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Pišljar ◽  
S. Ghosh ◽  
S. Turlapati ◽  
N. V. S. Rao ◽  
M. Škarabot ◽  
...  
Keyword(s):  

2022 ◽  
pp. 2110985
Author(s):  
Fanshu Meng ◽  
Chenglin Zheng ◽  
Wenjie Yang ◽  
Bo Guan ◽  
Jingxia Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Manlin Zhang ◽  
Michael Lindner-D’Addario ◽  
Mahdi Roohnikan ◽  
Violeta Toader ◽  
Robert Bruce Lennox ◽  
...  

Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.


2021 ◽  
pp. 1-11
Author(s):  
Ying Shi ◽  
WanLi He ◽  
YaQian Zhang ◽  
YongFeng Cui ◽  
Lei Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Kyung Min Lee ◽  
Urice Tohgha ◽  
Timothy J. Bunning ◽  
Michael E. McConney ◽  
Nicholas P. Godman

Blue phase liquid crystals (BPLCs) composed of double-twisted cholesteric helices are promising materials for use in next-generation displays, optical components, and photonics applications. However, BPLCs are only observed in a narrow temperature range of 0.5–3 °C and must be stabilized with a polymer network. Here, we report on controlling the phase behavior of BPLCs by varying the concentration of an amorphous crosslinker (pentaerythritol triacrylate (PETA)). LC mixtures without amorphous crosslinker display narrow phase transition temperatures from isotropic to the blue phase-II (BP-II), blue phase-I (BP-I), and cholesteric phases, but the addition of PETA stabilizes the BP-I phase. A PETA content above 3 wt% prevents the formation of the simple cubic BP-II phase and induces a direct transition from the isotropic to the BP-I phase. PETA widens the temperature window of BP-I from ~6.8 °C for BPLC without PETA to ~15 °C for BPLC with 4 wt% PETA. The BPLCs with 3 and 4 wt% PETA are stabilized using polymer networks via in situ photopolymerization. Polymer-stabilized BPLC with 3 wt% PETA showed switching between reflective to transparent states with response times of 400–500 μs when an AC field was applied, whereas the application of a DC field induced a large color change from green to red.


2021 ◽  
pp. 2108330
Author(s):  
Jie Liu ◽  
Yujie Chen ◽  
Feng Jin ◽  
Jingxia Wang ◽  
Tomiki Ikeda ◽  
...  

2021 ◽  
Author(s):  
SeongYong Cho ◽  
Hiroyuki Yoshida ◽  
Masanori Ozaki

Sign in / Sign up

Export Citation Format

Share Document