scholarly journals High-resolution computed tomography with three-dimensional reconstruction for assessment of chronic pulmonary thromboembolic disease

2011 ◽  
Vol 141 (6) ◽  
pp. 1539-1540 ◽  
Author(s):  
Thoralf M. Sundt ◽  
Eric E. Williamson
2020 ◽  
Vol 2 (11) ◽  
pp. 2178-2184
Author(s):  
Jan Hiller ◽  
Nour-Eldin Abdelrehim Nour-Eldin ◽  
Tatjana Gruber-Rouh ◽  
Iris Burck ◽  
Marc Harth ◽  
...  

AbstractThe aim of the study was to obtain volumetric data of the components of the inner ear using three-dimensional reconstruction of high-resolution cone-beam computed tomography (CBCT) images. Two hundred three CBCT image series of the temporal bone from 118 anatomically normal patients (55 women and 63 men; mean age: 49.4 ± 20.4 years) with different suspected disorders were included in this study. Normative volumetric measurements of the inner ear, the cochlea, the semicircular canals (SSC), and the vestibule were determined using a semi-automated reconstruction method of the Workstation. Volumetric measurements were successfully completed in all 118 patients. Mean inner ear, cochlear, and vestibule volumes were statistically significantly larger in males than in females on both sides (p < 0.001). Regarding the semicircular canals, no statistically significant (p = 0.053) volume difference was found. The difference between the volumes on both sides was not significant. No correlation between the patient’s age and the volume of the compartments was seen (p > 0.05). There was no significant difference between mean bony inner ear volumes when the clinical diagnoses were compared (p > 0.05 for all clinical diagnoses and volumes). Our study concluded that three-dimensional reconstruction and assessment of the volumetric measurements of the inner ear can be obtained using high-resolution CBCT imaging.


2011 ◽  
Vol 191 (4) ◽  
pp. 1168-1179 ◽  
Author(s):  
Craig R. Brodersen ◽  
Eric F. Lee ◽  
Brendan Choat ◽  
Steven Jansen ◽  
Ronald J. Phillips ◽  
...  

2004 ◽  
Vol 72 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Julie Rosenthal ◽  
Vipul Mangal ◽  
Diana Walker ◽  
Michael Bennett ◽  
Tim J. Mohun ◽  
...  

1997 ◽  
Vol 82 (3) ◽  
pp. 998-1002 ◽  
Author(s):  
Nicolas Pettiaux ◽  
Marie Cassart ◽  
Manuel Paiva ◽  
Marc Estenne

Pettiaux, Nicolas, Marie Cassart, Manuel Paiva, and Marc Estenne. Three-dimensional reconstruction of human diaphragm with the use of spiral computed tomography. J. Appl. Physiol. 82(3): 998–1002, 1997.—We developed a technique of diaphragm imaging by using spiral computed tomography, and we studied four normal subjects who had been previously investigated with magnetic resonance imaging (A. P. Gauthier, S. Verbanck, M. Estenne, C. Segebarth, P. T. Macklem, and M. Paiva. J. Appl. Physiol. 76: 495–506, 1994). One acquisition of 15- to 25-s duration was performed at residual volume, functional residual capacity, functional residual capacity plus one-half inspiratory capacity, and total lung capacity with the subject holding his breath and relaxing. From these acquisitions, 20 coronal and 30 sagittal images were reconstructed at each lung volume; on each image, diaphragm contour in the zone of apposition and in the dome was digitized with the software Osiris, and the digitized silhouettes were used for three-dimensional reconstruction with Matlab. Values of length and surface area for the diaphragm, the dome, and the zone of apposition were very similar to those obtained with magnetic resonance imaging. We conclude that satisfactory three-dimensional reconstruction of the in vivo diaphragm may be obtained with spiral computed tomography, allowing accurate measurements of muscle length, surface area, and shape.


Sign in / Sign up

Export Citation Format

Share Document