Determination of in-situ engineering properties of soil using an inverse solution technique and limited field tests

2018 ◽  
Vol 79 ◽  
pp. 69-77
Author(s):  
Qingsong Zhang ◽  
Shrini K. Upadhyaya ◽  
Qingxi Liao ◽  
Xuan Li
1995 ◽  
Author(s):  
Shrini Upadhyaya ◽  
Dan Wolf ◽  
William J. Chancellor ◽  
Itzhak Shmulevich ◽  
Amos Hadas

The objectives of this study were to investigate soil-pneumatic tire interaction and develop traction-soil compaction prediction model. We have developed an inverse solution technique that employs a response surface methodology to determine engineering properties of soil in-situ. This technique is useful in obtaining actual properties of soil in-situ for use in traction and soil compaction studies rather than using the values obtained in the laboratory by employing remolded and/or disturbed soil samples. We have conducted extensive field tests i the U.S. to develop semi-empirical traction prediction equation for radial ply tires. A user friendly traction-soil compaction program was developed to predict tractive ability of radial ply tires using several different techniques and to estimate soil compaction induced by these tires. A traction prediction model that incorporates strain rate effects on the tractive ability of tires was developed in Israel. A mobile single wheel tester and an in-situ soil test device were developed i Israel to significantly enhance the ability of Israeli investigators to conduct traction-soil compaction research. This project has resulted in close cooperation between UCD, Technion, and ARO, which will be instrumental in future collaboration.


2013 ◽  
Vol 35 (1) ◽  
pp. 41-57 ◽  
Author(s):  
Aleksandra Borecka ◽  
Bartłomiej Olek

Abstract This work is only a preliminary study on the evaluation of geological engineering properties of loess area of Kraków. It has been expanded to include field tests (CPTU, DMT), which is an alternative to expensive and time-consuming laboratory tests. The field tests allow enough detail to track the variability of physical and mechanical properties of soils, but in many cases, provide too much information, because their interpretation is often based only on a qualitative analysis. Laboratory and field tests are complementary and should be continued in order to determine best the correlation between the measured values of the resistance probes (CPTU, DMT) and the results obtained from laboratory tests. This will provide new calculation formulas for the evaluation of geotechnical parameters of loess in situ.


2012 ◽  
Vol 488-489 ◽  
pp. 1553-1557 ◽  
Author(s):  
Fahad Irfan Siddiqui ◽  
Syed Baharom Azahar Bin Syed Osman

Precise determination of engineering properties of soil is essential for proper design and successful construction of any structure. The conventional methods for determination of engineering properties are invasive, costly and time-consuming. Electrical resistivity survey is an attractive tool for delineating subsurface properties without soil disturbance. Reliable correlations between electrical resistivity and other soil properties will enable us to characterize the subsurface soil without borehole sampling. This paper presents the preliminary results of an ongoing research on correlations of electrical resistivity with strength properties of soil. Soil investigations, field electrical resistivity survey (VES) and laboratory electrical resistivity measurements were conducted. From the data analysis, significant correlations have been obtained between resistivity and moisture content and angle of internal friction. Weaker correlations have been observed for cohesion and unit weight of soil.


Author(s):  
Donatas Urbaitis ◽  
Ieva Lekstutytė ◽  
Domas Gribulis

In order to evaluate overconsolidation ratio (OCR) of soil, the necessity to restore them as much as possible to in situ conditions appears, because sometimes when it is not taken into account, mistakes could be made while interpreting mechanical – strength properties of the soil. According to the work purpose, overconsolidation ratio of the investigated soil was set by performing odometer test and the obtained values were compared with the OCR calculated from cone and seismic penetration data. When the tests were performed and data analysed, it was found that OCR values depends on soil occurance depth, strength characteristics and stress conditions. The OCR values decreases with the declination of the depth. As many authors noted in the literature – the upper part of the soil is consolidated abnormally, thereby we can see that in our work. When results are evaluate, we can conclude that all of the analysed soils was overconsolidation. That was demonstrated by calculations according static penetration, oedometer test and seismic waves results. OCR values differences between the laboratory and field tests can show low quality of soil sampling, also due to correlations which was applied.


Sign in / Sign up

Export Citation Format

Share Document