soil disturbance
Recently Published Documents


TOTAL DOCUMENTS

748
(FIVE YEARS 191)

H-INDEX

45
(FIVE YEARS 5)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 109
Author(s):  
Michal Allman ◽  
Zuzana Dudáková ◽  
Martin Jankovský ◽  
Mária Vlčková ◽  
Vladimír Juško ◽  
...  

Soil disturbance and compaction are inherent in ground-based harvesting operations. These changes are affected by numerous factors, related mainly to the technical parameters of the machines, soil conditions, and the technology used. This study aimed to analyze the changes of surface layers of soil caused by skidder traffic without loads on the Cambisols of Western Carpathians. We observed changes in the soil bulk density and penetration resistance. The results showed that only machine traffic caused a 0.32 to 0.35 (g cm−3) increase in soil bulk density. Besides machine traffic, bulk density was affected by soil moisture content. Penetration resistance of soil increased by 0.15 to 1.04 (MPa) after traffic of 40 machines. Penetration resistance showed a lower increase after traffic, and regression and correlation analysis proved a relationship between penetration resistance, skeleton content, and penetration depth, besides the number of machine passes (r = 0.33–0.55). Observing the changes in the physical properties of soils caused by machine traffic allows for a more detailed view of the effects of forest harvesting machinery on forest soils.


Author(s):  
Stine K. Jacobsen ◽  
Lene Sigsgaard ◽  
Anna B. Johansen ◽  
Kristian Thorup-Kristensen ◽  
Per M. Jensen

Abstract Introduction Agricultural intensification results in biodiversity loss through land conversion and management practices which negatively impact arthropods. The abundance and diversity of ground-dwelling predators, e.g. ground beetles (Coleoptera: Carabidae) and spiders (Araneae), are negatively affected by soil disturbances such as tillage. Reducing soil disturbances can potentially conserve arthropod populations in the field and reduce the use of chemical pest controls. The present study investigated the ground-dwelling predatory community using pitfall traps in cereal fields with three different levels of soil disturbance: conventional tillage, reduced tillage and no tillage under Conservation Agriculture management, in 2018 and 2019. Pitfall traps were placed in transects from the field margins. Overall, the activity-density of ground-dwelling predators was higher in fields with minimum soil disturbance and generally declined with increased distance to semi-natural habitats. Functional diversity, expressed by the body size of ground beetles, was also affected by soil disturbances; large ground beetles more consistently occurred in CA, while few or none of the largest ground beetles were found in RT and CT. A higher sample-heterogeneity in less disturbed fields was indicated by a more variable median and higher skewness in the number of predators in those fields. In 2019 only, species diversity was higher along field edges bordering semi-natural habitats when compared to the cropped area. Our results show that reduced tillage supports predator arthropod communities at a local scale: It also bolsters agro-ecosystem resilience by promoting a higher activity-density and by increasing the heterogeneity and functional diversity of ground-dwelling predators. Implications for insect conservation The results obtained in the present study show that soil disturbances significantly influence arthropod abundance and diversity. Conservation of epigeic natural enemies in the agricultural landscape is improved by reducing soil-disturbing events such as tillage.


2022 ◽  
Vol 215 ◽  
pp. 105200
Author(s):  
Seyed Hasan Hoseinian ◽  
Abbas Hemmat ◽  
Ali Esehaghbeygi ◽  
Gholamhossein Shahgoli ◽  
Alireza Baghbanan

2022 ◽  
pp. 270-283
Author(s):  
Christian Thierfelder ◽  
Peter Steward

Abstract Climate change and soil fertility decline are threatening food security in southern Africa and efforts have been made to adapt current cropping systems to the needs of smallholder farmers. Conservation Agriculture (CA) based on minimum soil disturbance, crop residue retention and crop diversification has been proposed as a strategy to address the challenges smallholder farmers face. Here we analyse the potential contributions of CA towards adaptation to the effects of climate change by summarizing data on infiltration, soil moisture dynamics and crop productivity under heat and drought stress. The data were taken in the main from CIMMYT's on-farm and on-station trial network. Data show that CA systems maintain 0.7-7.9 times higher water infiltration than the conventional tilled system depending on soil type, which increases soil moisture during the cropping season by 11%-31% between CA treatments and the conventional control treatment. This leads to greater adaptive capacity of CA systems during in-season dry spells and under heat stress. A supporting regional maize productivity assessment, analysing the results of numerous on-farm and on-station experiments, showed that CA systems will outperform conventional tillage practices (CP), especially on light-textured soils, under heat and drought stress. With higher rainfall and low heat stress, this relation was more positive towards CP and on clay soil there was no benefit of practising CA when rainfall was high. The long dry season and limited biomass production of CA systems in southern Africa require complementary good agricultural practices to increase other soil quality parameters (e.g. increased soil carbon) to maintain higher productivity and sustainability over time. This can be addressed by combinations of improved stress-tolerant seed, targeted fertilization, inclusion of tree-based components or green manure cover crops in the farming system, scale-appropriate mechanization and improved weed control strategies.


2022 ◽  
pp. 345-360
Author(s):  
Erna Kruger ◽  
Hendrik Smith ◽  
Phumzile Ngcobo ◽  
Mazwi Dlamini ◽  
Temakholo Mathebula

Abstract Introduction of Conservation Agriculture (CA) and associated climate-resilient agriculture practices within an innovation system approach, and using farmer-level experimentation and learning groups as the primary learning and social empowerment processes, has created a sustainable and expanding farming alternative for smallholders that is improving their resilience to climate change substantially. Through a knowledge co-creation process, smallholder farmers in the programme have adapted and incorporated a wide range of practices into their farming system, including minimum soil disturbance, close spacing, improved varieties, judicious use of fertilizer, pesticides and herbicides, crop diversification, intercropping and crop rotation as well as fodder production and livestock integration. They have organized themselves into learning groups, local savings and loan associations, water committees, farmer centres and cooperatives and in so doing have created innovation platforms for local value chain development. They have built ongoing relationships with other smallholders, NGOs, academic institutions, government extension services and agribusiness suppliers, and have promoted CA tirelessly within their local communities and social networks. To date, this is the most successful model for implementation of CA in smallholder farming in South Africa and, through networking and upscaling activities, is being promoted nationally as a strategic approach to smallholder adaptation and mitigation programming, in line with the Africa climate smart agriculture (CSA) Vision 25×25 (NEPAD, Malabo, June 2014).


2022 ◽  
pp. 284-292
Author(s):  
John E. Sariah ◽  
Frank Mmbando

Abstract Conservation Agriculture (CA)-based Sustainable Intensification (CASI) practices in this study comprised minimum soil disturbance, permanent soil cover, intercropping of maize and legumes, and use of improved crop genotypes and fertilizers, and were tested on-farm in different agroecologies in northern and eastern Tanzania. The results for six consecutive years of study indicate increased adoption of CASI practices compared to the baseline year (2010). The major impacts of these practices were reduced production costs, labour savings and overall increased crop and land productivity. The average area allocated to improved maize-legume (ML) intercrop rose during the project period by 5.28 ha per household, of which 15% was under complete CASI practices. Adoption trends show that, on average, 6.5% of adopters across the study and spillover communities started adoption in the 2nd year and about 14% of farmers adopted the practices over the next 3-5 years. Demographic and human capital (family size, education, age and farming experience), on-farm CASI demonstrations, farmer to farmer exchange visits, social capital (farmers' group or a cooperative), access to input and output markets (improved seeds, herbicides, fertilizers, insecticides and equipment) and food security were found to have positive and significant effects on adoption of a range of CASI practices. These results suggest continued and long-term efforts in investments in demonstrations, institutionalizing CASI practices in NARS, and good links to input and output markets, including appropriate machinery, are necessary to achieve sustained adoption.


2022 ◽  
pp. 151-175
Author(s):  
W. Trent Bunderson ◽  
Christian L. Thierfelder ◽  
Zwide D. Jere ◽  
R. G. K. Museka

Abstract The Conservation Agriculture (CA) system promoted by Total LandCare (TLC) and the International Maize and Wheat Improvement Center (CIMMYT) is based on 14 years of experience grounded on the principles of minimum soil disturbance, good soil cover and crop associations. The platform to promote CA in Malawi was to build a strong base of knowledge about best practices through an innovative non-linear research-extension approach. Long-term on-farm trials were conducted in multiple sites across Malawi to compare yields and labour inputs of CA with conventional ridge tillage on the same footing. Results showed the superiority of CA in terms of maize and legume yields with significant savings in labour and resilience to climate change. The results provided the basis to upscale CA although adoption was lower than expected. Key challenges included: (i) lack of exposure and training; (ii) conflicting extension messages; (iii) misconceptions about inputs and tools for CA; (iv) resistance to change unless CA is clearly seen to be a better practice; (v) fears about controlling weeds, pests and diseases under CA; and (vi) perceptions that increased termites and earthworms are harmful to soils and crops.


2021 ◽  
pp. 139-152
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Aiming at solving problems that the variation of tillage depth between rows and within rows caused by the surface undulation was great, the lateral stability of tillage depth obtained by the method of adjusting at the three-point suspension was poor, and lack of subsoilers with the function of accurate detection and adjustment of single row tillage depth, a method of independent control of single row tillage depth based on ultrasonic sensor detection and hydraulic adjustment was proposed. And the tillage depth monitoring and control subsoiling assembly and the subsoiler equipped with subsoiling assemblies were designed. The key structural parameters of the hydraulic cylinder and the model of the three-position four-way magnetic exchange valve were determined. The subsoiling quality and performance comparison tests were conducted, and the results showed that the mean value of the variable coefficient of soil hardness, looseness of soil and coefficient of soil disturbance were 52.23%, 32.55% and 62.15%, respectively, and the stability coefficient of tillage depth was 92.43%, which all met the subsoiling operation requirements. The standard deviation of tillage depth belonged to the method of independent adjustment of single row and unified adjustment of each row were 38.315mm and 51.521mm, respectively. The subsoiler equipped with tillage depth monitoring and control subsoiling assemblies designed in this paper was capable of significantly improving the stability of tillage depth between rows and within rows.


Author(s):  
Dmitrii Lepilin ◽  
Annamari (Ari) Laurén ◽  
Jori Uusitalo ◽  
Raija Laiho ◽  
Hannu Fritze ◽  
...  

In the boreal region, peatland forests are a significant resource of timber. Under pressure from a growing bioeconomy and climate change, timber harvesting is increasingly occurring over unfrozen soils. This is likely to cause disturbance in the soil biogeochemistry. We studied the impact of machinery-induced soil disturbance on the vegetation, microbes, and soil biogeochemistry of drained boreal peatland forests caused by machinery traffic during thinning operations. To assess potential recovery, we sampled six sites that ranged in time since thinning from a few months to 15 years. Soil disturbance directly decreased moss biomass and led to an increase in sedge cover and a decrease in root production. Moreover, soil CO2 production potential, and soil CO2 and CH4 concentrations were greater in recently disturbed areas than in the control areas. In contrast, CO2 and CH4 emissions, microbial biomass and structure, and the decomposition rate of cellulose appeared to be uncoupled and did not show signs of impact. While the impacted properties varied in their rate of recovery, they all fully recovered within 15 years covered by our chronosequence study. Conclusively, drained boreal peatlands appeared to have high biological resilience to soil disturbance caused by forest machinery during thinning operations.


2021 ◽  
Vol 34 (4) ◽  
pp. 887-894
Author(s):  
GUSTAVO HADDAD SOUZA VIEIRA ◽  
ARILDO SEBASTIÃO SILVA ◽  
ARUN DILIPKUMAR JANI ◽  
LUSINERIO PREZOTTI ◽  
PAOLA ALFONSA VIEIRA LO MONACO

ABSTRACT This study aimed to determine how crop residue placement and composition would affect soil water content and temperature during the dry season in the central region of Espírito Santo state, Brazil. A 19-week field study was conducted from April to August 2017. A 2 x 4 factorial study with four replications was implemented using a randomized complete block design. Factors were soil management [conventional tillage (CT) and no soil disturbance (ND)] and residue amendment [maize (Zea mays L.), sunn hemp (Crotalaria juncea L.), a maize-sunn hemp mixture, and a no amendment control]. Soil water content and temperature were measured weekly at predetermined soil depth intervals. Soil water content was higher in ND plots amended with surface residues than under all other treatments in the 0 to 0.05 m depth range. All residue amendments in this range were equally effective in conserving soil water. Surface residues reduced soil temperature by up to 8.4 °C relative to the control in ND plots. Incorporating residue amendments by CT cancelled all temperature-moderating benefits provided by surface residues. These results indicate that surface residues from cereals, legumes, or cereal/legume mixtures are equally effective in conserving soil water and moderating soil temperature during the dry season. Additional research is needed to determine how improved soil environmental conditions, generated by surface residues, would affect nutrient acquisition and crop performance.


Sign in / Sign up

Export Citation Format

Share Document