scholarly journals P1.01-122 A Clinical Utility Study of Plasma DNA Next Generation Sequencing Guided Treatment of Uncommon Drivers in Advanced Non-Small-Cell Lung Cancers

2019 ◽  
Vol 14 (10) ◽  
pp. S410
Author(s):  
H. Tu ◽  
C. Xu ◽  
C. Tong-Li ◽  
M. Offin ◽  
P. Razavi ◽  
...  
2018 ◽  
Vol 71 (9) ◽  
pp. 767-773 ◽  
Author(s):  
Caterina Fumagalli ◽  
Davide Vacirca ◽  
Alessandra Rappa ◽  
Antonio Passaro ◽  
Juliana Guarize ◽  
...  

BackgroundMolecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously.AimsTo evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC.MethodsA single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes.Results441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene (FGFR1) of the panel. Recurrent alterations were observed in KRAS, TP53, EGFR, STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations.ConclusionsThe study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies.


2017 ◽  
Vol 142 (3) ◽  
pp. 353-357 ◽  
Author(s):  
Mitra Mehrad ◽  
Somak Roy ◽  
Humberto Trejo Bittar ◽  
Sanja Dacic

Context.— Different testing algorithms and platforms for EGFR mutations and ALK rearrangements in advanced-stage lung adenocarcinoma exist. The multistep approach with single-gene assays has been challenged by more efficient next-generation sequencing (NGS) of a large number of gene alterations. The main criticism of the NGS approach is the detection of genomic alterations of uncertain significance. Objective.— To determine the best testing algorithm for patients with lung cancer in our clinical practice. Design.— Two testing approaches for metastatic lung adenocarcinoma were offered between 2012–2015. One approach was reflex testing for an 8-gene panel composed of DNA Sanger sequencing for EGFR, KRAS, PIK3CA, and BRAF and fluorescence in situ hybridization for ALK, ROS1, MET, and RET. At the oncologist's request, a subset of tumors tested by the 8-gene panel was subjected to a 50-gene Ion AmpliSeq Cancer Panel. Results.— Of 1200 non–small cell lung carcinomas (NSCLCs), 57 including 46 adenocarcinomas and NSCLCs, not otherwise specified; 7 squamous cell carcinomas (SCCs); and 4 large cell neuroendocrine carcinomas (LCNECs) were subjected to Ion AmpliSeq Cancer Panel. Ion AmpliSeq Cancer Panel detected 9 potentially actionable variants in 29 adenocarcinomas that were wild type by the 8-gene panel testing (9 of 29, 31.0%) in the following genes: ERBB2 (3 of 29, 10.3%), STK11 (2 of 29, 6.8%), PTEN (2 of 29, 6.8%), FBXW7 (1 of 29, 3.4%), and BRAF G469A (1 of 29, 3.4%). Four SCCs and 2 LCNECs showed investigational genomic alterations. Conclusions.— The NGS approach would result in the identification of a significant number of actionable gene alterations, increasing the therapeutic options for patients with advanced NSCLCs.


Sign in / Sign up

Export Citation Format

Share Document