cancer panel
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 59)

H-INDEX

14
(FIVE YEARS 5)

Author(s):  
Athina Giannoudis ◽  
Alexander Sartori ◽  
Lee Eastoe ◽  
Rasheed Zakaria ◽  
Christopher Charlton ◽  
...  

Abstract Purpose Brain metastases (BM) are an increasing clinical problem. This study aimed to assess paired primary breast cancers (BC) and BM for aberrations within TP53, PIK3CA, ESR1, ERBB2 and AKT utilising the MassARRAY® UltraSEEK® technology (Agena Bioscience, San Diego, USA). Methods DNA isolated from 32 paired primary BCs and BMs was screened using the custom UltraSEEK® Breast Cancer Panel. Data acquisition and analysis was performed by the Agena Bioscience Typer software v4.0.26.74. Results Mutations were identified in 91% primary BCs and 88% BM cases. TP53, AKT1, ESR1, PIK3CA and ERBB2 genes were mutated in 68.8%, 37.5%, 31.3%, 28.1% and 3.1% respectively of primary BCs and in 59.4%, 37.5%, 28.1%, 28.1% and 3.1% respectively of BMs. Differences in the mutations within the 5 genes between BC and paired BM were identified in 62.5% of paired cases. In primary BCs, ER-positive/HER2-negative cases harboured the most mutations (70%), followed by ER-positive/HER2-positive (15%) and triple-negatives (13.4%), whereas in BMs, the highest number of mutations was observed in triple-negative (52.5%), followed by ER-positive/HER2-negative (35.6%) and ER-negative/HER2-positive (12%). There was a significant association between the number of mutations in the primary BC and breast-to-brain metastasis-free survival (p = 0.0001) but not with overall survival (p = 0.056). Conclusion These data demonstrate the discordancy between primary BC and BM, as well as the presence of clinically important, actionable mutations in BCBM. The UltraSEEK® Breast Cancer Panel provides a tool for BCBM that can be utilised to direct more tailored treatment decisions and for clinical studies investigating targeted agents.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1326
Author(s):  
Mamoon Rashid ◽  
Abdulrahman Alasiri ◽  
Mohammad A. Al Balwi ◽  
Aziza Alkhaldi ◽  
Ahmed Alsuhaibani ◽  
...  

B-lineage acute lymphocytic leukemia (B-ALL) is characterized by different genetic aberrations at a chromosomal and gene level which are very crucial for diagnosis, prognosis and risk assessment of the disease. However, there is still controversial arguments in regard to disease outcomes in specific genetic abnormalities, e.g., 9p-deletion. Moreover, in absence of cytogenetic abnormalities it is difficult to predict B-ALL progression. Here, we use the advantage of Next-generation sequencing (NGS) technology to study the mutation landscape of 12 patients with B-ALL using Comprehensive Cancer Panel (CCP) which covers the most common mutated cancer genes. Our results describe new mutations in CSF3R gene including S661N, S557G, and Q170X which might be associated with disease progression.


2021 ◽  
Vol 11 (6) ◽  
pp. 535
Author(s):  
Bader Almuzzaini ◽  
Jahad Alghamdi ◽  
Alhanouf Alomani ◽  
Saleh AlGhamdi ◽  
Abdullah A. Alsharm ◽  
...  

Biomarker discovery would be an important tool in advancing and utilizing the concept of precision and personalized medicine in the clinic. Discovery of novel variants in local population provides confident targets for developing biomarkers for personalized medicine. We identified the need to generate high-quality sequencing data from local colorectal cancer patients and understand the pattern of occurrence of variants. In this report, we used archived samples from Saudi Arabia and used the AmpliSeq comprehensive cancer panel to identify novel somatic variants. We report a comprehensive analysis of next-generation sequencing results with a coverage of >300X. We identified 466 novel variants which were previously unreported in COSMIC and ICGC databases. We analyzed the genes associated with these variants in terms of their frequency of occurrence, probable pathogenicity, and clinicopathological features. Among pathogenic somatic variants, 174 were identified for the first time in the large intestine. APC, RET, and EGFR genes were most frequently mutated. A higher number of variants were identified in the left colon. Occurrence of variants in ERBB2 was significantly correlated with those of EGFR and ATR genes. Network analyses of the identified genes provide functional perspective of the identified genes and suggest affected pathways and probable biomarker candidates. This report lays the ground work for biomarker discovery and identification of driver gene mutations in local population.


2021 ◽  
Author(s):  
Carlo Palmieri ◽  
Athina Giannoudis ◽  
Alexander Sartori ◽  
Lee Eastoe ◽  
Rasheed Zakaria ◽  
...  

Abstract Purpose. Brain metastases (BM) are an increasing clinical problem. This study aimed to assess paired primary breast cancers (BC) and BM for aberrations within TP53, PIK3CA, ESR1, ERBB2 and AKT utilising the MassARRAY® UltraSEEK® technology (Agena Bioscience, San Diego, USA). Methods. DNA isolated from 32 paired primary BCs and BMs was screened using the custom UltraSEEK® Breast Cancer Panel. Data acquisition and analysis was performed by the Agena Bioscience Typer software v4.0.26.74. Results. Mutations were identified in 91% primary BCs and 88% BM cases. TP53, AKT1, ESR1, PIK3CA and ERBB2 genes were mutated in 68.8%, 37.5%, 31.3%, 28.1% and 3.1% respectively of primary BCs and in 59.4%, 37.5%, 28.1%, 28.1% and 3.1% respectively of BMs. Differences in the mutations within the 5 genes between BC and paired BM were identified in 62.5% of paired cases. In primary BCs, ER-positive/HER2-negative cases harboured the most mutations (70%), followed by ER-positive/HER2-positive (15%) and triple-negatives (13.4%) whereas in BMs, the highest number of mutations was observed in triple-negatives (52.5%), followed by ER-positive/HER2-negative (35.6%) and ER-negative/HER2-positive (12%). There was a significant association between the number of mutations in the primary BC and breast-to-brain metastasis-free survival (p=0.0001) but not with overall survival (p=0.056). Conclusion. These data demonstrate the discordancy between primary BC and BM, as well as the presence of clinically important, actionable mutations in BCBM. The UltraSEEK® Breast Cancer Panel provides a tool for BCBM that can be utilised to direct more tailored treatment decisions and for clinical studies investigating targeted agents.


Author(s):  
Bader Almuzzaini ◽  
Jahad Alghamdi ◽  
Alhanouf Alomani ◽  
Saleh AlGhamdi ◽  
Abdullah Ali Alsharm ◽  
...  

Discovery of novel variants from data derived from local population provides confident targets for developing biomarkers for personalized medicine. Biomarker discovery would be an important tool in advancing and utilizing the concept of precision and personalized medicine in the clinic. We identified the need to generate high quality sequencing data from local population and understand the pattern of occurrence of variants in colorectal cancer patients. In this report, we used archived samples from Saudi Arabia and used Ampliseq Comprehensive Cancer panel to identify novel somatic variants. We report a comprehensive analysis of next generation sequencing results with a coverage of >300X. We identified 466 novel variants which were previously unreported in COSMIC and ICGC databases. We analyzed the genes associated with these variants in terms of their frequency of occurrence, probable pathogenicity and clinicopathological features. Among pathogenic somatic variants, 174 were identified for the first time in large intestine. APC, RET and EGFR genes were most frequently mutated. Higher number of variants were identified in left colon. Occurrence of variants in ERBB2 was significantly correlated with those of EGFR and ATR genes. Network analyses of the identified genes provide functional perspective of the identified genes and suggest affected pathways and probable biomarker candidates. This report lays the ground work for biomarker discovery and identification of driver gene mutations in local population.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amanda Ferreira Vidal ◽  
Rafaella Sousa Ferraz ◽  
Antonette El-Husny ◽  
Caio Santos Silva ◽  
Tatiana Vinasco-Sandoval ◽  
...  

Abstract Background Next generation sequencing (NGS) has been a handy tool in clinical practice, mainly due to its efficiency and cost-effectiveness. It has been widely used in genetic diagnosis of several inherited diseases, and, in clinical oncology, it may enhance the discovery of new susceptibility genes and enable individualized care of cancer patients. In this context, we explored a pan-cancer panel in the investigation of germline variants in Brazilian patients presenting clinical criteria for hereditary cancer syndromes or familial history. Methods Seventy-one individuals diagnosed or with familial history of hereditary cancer syndromes were submitted to custom pan-cancer panel including 16 high and moderate penetrance genes previously associated with hereditary cancer syndromes (APC, BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1, RET, TP53, VHL, XPA and XPC). All pathogenic variants were validated by Sanger sequencing. Results We identified a total of eight pathogenic variants among 12 of 71 individuals (16.9%). Among the mutation-positive subjects, 50% were diagnosed with breast cancer and had mutations in BRCA1, CDH1 and MUTYH. Notably, 33.3% were individuals diagnosed with polyposis or who had family cases and harbored pathogenic mutations in APC and MUTYH. The remaining individuals (16.7%) were gastric cancer patients with pathogenic variants in CDH1 and MSH2. Overall, 54 (76.05%) individuals presented at least one variant uncertain significance (VUS), totalizing 81 VUS. Of these, seven were predicted to have disease-causing potential. Conclusion Overall, analysis of all these genes in NGS-panel allowed the identification not only of pathogenic variants related to hereditary cancer syndromes but also of some VUS that need further clinical and molecular investigations. The results obtained in this study had a significant impact on patients and their relatives since it allowed genetic counselling and personalized management decisions.


Genomics ◽  
2021 ◽  
Author(s):  
Zhaopei Li ◽  
Hailong Wang ◽  
Zhen Zhang ◽  
Xiangwen Meng ◽  
Dujuan Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Motohiro Izumi ◽  
Jun Oyanagi ◽  
Kenji Sawa ◽  
Mitsuru Fukui ◽  
Koichi Ogawa ◽  
...  

AbstractMultiple primary lung cancers (MPLCs) harbour various genetic profiles among the tumours, even from individuals with same non-intrinsic risk factors. Paired mutational analyses were performed to obtain a census of mutational events in MPLC and assess their relationship with non-intrinsic risk factors. Thirty-eight surgical specimens from 17 patients diagnosed as MPLC were used. Extracted DNAs were sequenced for somatic mutations in 409 cancer-associated genes from a comprehensive cancer panel. We statistically analysed the correlation between each driver mutation frequency and non-intrinsic risk factors using Fisher's exact test, and whether genetic mutations occurred concomitantly or randomly in MPLC using an exact test. Comprehensive genetic analyses suggested different mutation profiles in tumours within the same individuals, with some exceptions. EGFR, KRAS, TP53, or PARP1 mutations were concomitantly detected in some MPLC cases. EGFR mutations were significantly more frequent in never or light smokers and females. Concomitant EGFR or KRAS mutations in MPLCs were significantly more frequent than expected by chance (P = .0023 and .0049, respectively) suggesting a more prominent role of non-intrinsic risk factors in EGFR and KRAS mutations than other mutations, which occurred more randomly. Concomitant EGFR or KRAS mutations were particularly prominent in never or light smokers and males.


Sign in / Sign up

Export Citation Format

Share Document