MA07.02 Evaluating Circulating Tumor DNA to Predict Overall Survival Risk in Non-Squamous Non-Small Cell Lung Cancer in IMpower150

2021 ◽  
Vol 16 (10) ◽  
pp. S905-S906
Author(s):  
Z.J. Assaf ◽  
A. Fine ◽  
W. Zou ◽  
M. Socinski ◽  
A. Young ◽  
...  
2020 ◽  
Vol 9 (12) ◽  
pp. 3861
Author(s):  
Guillaume Herbreteau ◽  
Alexandra Langlais ◽  
Laurent Greillier ◽  
Clarisse Audigier-Valette ◽  
Lionel Uwer ◽  
...  

Background: The IFCT-1603 trial evaluated atezolizumab in small cell lung cancer (SCLC). The purpose of the present study was to determine whether circulating tumor DNA (ctDNA), prospectively collected at treatment initiation, was associated with the prognosis of SCLC, and whether it identified patients who benefited from atezolizumab. Methods: 68 patients were included in this study: 46 patients were treated with atezolizumab and 22 with conventional chemotherapy. Circulating DNA was extracted from plasma and NGS (Next Generation Sequencing) looked for mutations in the TP53, RB1, NOTCH1, NOTCH2, and NOTCH3 genes. ctDNA was detectable when at least one somatic mutation was identified, and its relative abundance was quantified by the variant allele fraction (VAF) of the most represented mutation. Results: We found that 49/68 patients (70.6%) had detectable baseline ctDNA. The most frequently identified mutations were TP53 (32/49; 65.3%) and RB1 (25/49; 51.0%). Patients with detectable ctDNA had a significantly lower disease control rate at week 6 compared with patients with no detectable ctDNA, regardless of the nature of the treatment. Detection of ctDNA was associated with a poor OS prognosis. The detection of ctDNA at a relative abundance greater than the median value was significantly associated with poor overall survival (OS) and progression free survival (PFS). Interestingly, the benefit in overall survival (OS) associated with low ctDNA was more pronounced in patients treated with atezolizumab than in patients receiving chemotherapy. Among patients whose relative ctDNA abundance was below the median, those treated with atezolizumab tended to have higher OS than those in the chemotherapy arm. Conclusion: ctDNA is strongly associated with the prognosis of SCLC patients treated with second-line immunotherapy. Its analysis seems justified for future SCLC clinical trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Yu Yao ◽  
Yaping Xu ◽  
Lifeng Li ◽  
Yan Gong ◽  
...  

AbstractCirculating tumor DNA (ctDNA) provides a noninvasive approach to elucidate a patient’s genomic landscape and actionable information. Here, we design a ctDNA-based study of over 10,000 pan-cancer Chinese patients. Using parallel sequencing between plasma and white blood cells, 14% of plasma cell-free DNA samples contain clonal hematopoiesis (CH) variants, for which detectability increases with age. After eliminating CH variants, ctDNA is detected in 73.5% of plasma samples, with small cell lung cancer (91.1%) and prostate cancer (87.9%) showing the highest detectability. The landscape of putative driver genes revealed by ctDNA profiling is similar to that in a tissue-based database (R2 = 0.87, p < 0.001) but also shows some discrepancies, such as higher EGFR (44.8% versus 25.2%) and lower KRAS (6.8% versus 27.2%) frequencies in non-small cell lung cancer, and a higher TP53 frequency in hepatocellular carcinoma (53.1% versus 28.6%). Up to 41.2% of plasma samples harbor drug-sensitive alterations. These findings may be helpful for identifying therapeutic targets and combined treatment strategies.


2018 ◽  
Vol 13 (10) ◽  
pp. S925-S926
Author(s):  
R. Grinberg ◽  
L. Roisman ◽  
S. Geva ◽  
M. Lefterova ◽  
K. Quinn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document