Novel Therapeutic Strategies for Castration Resistant Prostate Cancer: Inhibition of Persistent Androgen Production and Androgen Receptor Mediated Signaling

2011 ◽  
Vol 185 (3) ◽  
pp. 787-794 ◽  
Author(s):  
Arturo Molina ◽  
Arie Belldegrun
2016 ◽  
Vol 23 (12) ◽  
pp. T179-T197 ◽  
Author(s):  
Isabel Coutinho ◽  
Tanya K Day ◽  
Wayne D Tilley ◽  
Luke A Selth

The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC), which arises after failure of androgen deprivation therapy (ADT). Persistent AR activity in spite of ADT and the second-generation AR-targeting agents enzalutamide and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. Herein, we provide a detailed description of how such alterations contribute to the development and progression of CRPC. Aspects of this broad and ever-evolving field specifically addressed in this review include: the etiology and significance of increased AR expression; the frequency and role of gain-of-function mutations in theARgene; the function of constitutively active, truncated forms of the AR termed AR variants and the clinical relevance of alterations to the activity and expression of AR coregulators. Additionally, we examine the novel therapeutic strategies to inhibit these classes of therapy resistance mechanisms, with an emphasis on emerging agents that act in a manner distinct from the current ligand-centric approaches. Throughout, we discuss how the central role of AR in prostate cancer and the constant evolution of the AR signaling axis during disease progression represent archetypes of two key concepts in oncology, oncogene addiction and therapy-mediated selection pressure.


2018 ◽  
Vol 25 (11) ◽  
pp. R545-R557 ◽  
Author(s):  
S Prekovic ◽  
T Van den Broeck ◽  
S Linder ◽  
M E van Royen ◽  
A B Houtsmuller ◽  
...  

Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2017 ◽  
Vol 28 (9) ◽  
pp. 2264-2271 ◽  
Author(s):  
D.E. Rathkopf ◽  
M.R. Smith ◽  
C.J. Ryan ◽  
W.R. Berry ◽  
N.D. Shore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document