scholarly journals New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm

2019 ◽  
Vol 180 ◽  
pp. 12-25 ◽  
Author(s):  
Huynh Thi Thanh Binh ◽  
Pham Dinh Thanh ◽  
Ta Bao Thang
2015 ◽  
Vol 24 (05) ◽  
pp. 1550067 ◽  
Author(s):  
Huseyin Kusetogullari ◽  
Md. Haidar Sharif ◽  
Mark S. Leeson ◽  
Turgay Celik

The need of effective packet transmission to deliver advanced performance in wireless networks creates the need to find shortest network paths efficiently and quickly. This paper addresses a reduced uncertainty-based hybrid evolutionary algorithm (RUBHEA) to solve dynamic shortest path routing problem (DSPRP) effectively and rapidly. Genetic algorithm (GA) and particle swarm optimization (PSO) are integrated as a hybrid algorithm to find the best solution within the search space of dynamically changing networks. Both GA and PSO share context of individuals to reduce uncertainty in RUBHEA. Various regions of search space are explored and learned by RUBHEA. By employing a modified priority encoding method, each individual in both GA and PSO are represented as a potential solution for DSPRP. A complete statistical analysis has been performed to compare the performance of RUBHEA with various state-of-the-art algorithms. It shows that RUBHEA is considerably superior (reducing the failure rate by up to 50%) to similar approaches with increasing number of nodes encountered in the networks.


2021 ◽  
Vol 26 (6) ◽  
pp. 1-22
Author(s):  
Chen Jiang ◽  
Bo Yuan ◽  
Tsung-Yi Ho ◽  
Xin Yao

Digital microfluidic biochips (DMFBs) have been a revolutionary platform for automating and miniaturizing laboratory procedures with the advantages of flexibility and reconfigurability. The placement problem is one of the most challenging issues in the design automation of DMFBs. It contains three interacting NP-hard sub-problems: resource binding, operation scheduling, and module placement. Besides, during the optimization of placement, complex constraints must be satisfied to guarantee feasible solutions, such as precedence constraints, storage constraints, and resource constraints. In this article, a new placement method for DMFB is proposed based on an evolutionary algorithm with novel heuristic-based decoding strategies for both operation scheduling and module placement. Specifically, instead of using the previous list scheduler and path scheduler for decoding operation scheduling chromosomes, we introduce a new heuristic scheduling algorithm (called order scheduler) with fewer limitations on the search space for operation scheduling solutions. Besides, a new 3D placer that combines both scheduling and placement is proposed where the usage of the microfluidic array over time in the chip is recorded flexibly, which is able to represent more feasible solutions for module placement. Compared with the state-of-the-art placement methods (T-tree and 3D-DDM), the experimental results demonstrate the superiority of the proposed method based on several real-world bioassay benchmarks. The proposed method can find the optimal results with the minimum assay completion time for all test cases.


2021 ◽  
Vol 100 ◽  
pp. 104187 ◽  
Author(s):  
Huynh Thi Thanh Binh ◽  
Ta Bao Thang ◽  
Nguyen Duc Thai ◽  
Pham Dinh Thanh

Author(s):  
M. Zaki Zakaria ◽  
Sofianita Mutalib ◽  
Shuzlina Abdul Rahman ◽  
Shamsul J Elias ◽  
A Zambri Shahuddin

Radio Frequency Identification (RFID) is a one of the fastest growing and most beneficial technologies being adopted by businesses today. One of the important issues is localization of items in a warehouse or business premise and to keep track of the said items, it requires devices which are costly to deploy. This is because many readers need to be placed in a search space. In detecting an object, a reader will only report the signal strength of the tag detected. Once the signal strength report is obtained, the system will compute the coordinates of the RFID tags based on each data grouping. In this paper, algorithms using genetic algorithm, particle swarm, ant colony optimization are proposed to achieve the shortest path for an RFID mobile reader, while covering full search area. In comparison, for path optimization, the mobile reader traverses from one node to the next, moving around encountered obstacles in its path.  The tag reading process is iterative, in which the reader arrives at its start point at the end of each round. Based on the shortest path, an algorithm that computes the location of items in the search area is used. The simulation results show that the ACO method works more effectively and efficiently compare to others when solving shortest path problems.


Sign in / Sign up

Export Citation Format

Share Document