scholarly journals Computing the Iwasawa decomposition of the classical Lie groups of noncompact type using the QR decomposition

2016 ◽  
Vol 493 ◽  
pp. 573-579 ◽  
Author(s):  
P. Sawyer
2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


2021 ◽  
Vol 9 (1) ◽  
pp. 119-148
Author(s):  
Thomas Ernst

Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples S U q ( 1 , 1 ) S O q ( 2 ) {{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and S O q ( 3 ) S O q ( 2 ) {{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).


2002 ◽  
Vol 02 (01) ◽  
pp. 1-23 ◽  
Author(s):  
MING LIAO

Let ϕt be a Lévy process in a semisimple Lie group G of noncompact type regarded as a stochastic flow on a homogeneous space of G, called a G-flow. We will determine the Lyapunov exponents and the stable manifolds of ϕt, and the stationary points of an associated vector field. As examples, SL (d,R)-flows and SO (1,d)-flows on SO (d) and Sd - 1 are discussed in details.


2020 ◽  
pp. 1-37
Author(s):  
HIROKAZU MARUHASHI

Abstract Let $M\stackrel {\rho _0}{\curvearrowleft }S$ be a $C^\infty $ locally free action of a connected simply connected solvable Lie group S on a closed manifold M. Roughly speaking, $\rho _0$ is parameter rigid if any $C^\infty $ locally free action of S on M having the same orbits as $\rho _0$ is $C^\infty $ conjugate to $\rho _0$ . In this paper we prove two types of result on parameter rigidity. First let G be a connected semisimple Lie group with finite center of real rank at least $2$ without compact factors nor simple factors locally isomorphic to $\mathop {\mathrm {SO}}\nolimits _0(n,1)(n\,{\geq}\, 2)$ or $\mathop {\mathrm {SU}}\nolimits (n,1)(n\geq 2)$ , and let $\Gamma $ be an irreducible cocompact lattice in G. Let $G=KAN$ be an Iwasawa decomposition. We prove that the action $\Gamma \backslash G\curvearrowleft AN$ by right multiplication is parameter rigid. One of the three main ingredients of the proof is the rigidity theorems of Pansu, and Kleiner and Leeb on the quasi-isometries of Riemannian symmetric spaces of non-compact type. Secondly we show that if $M\stackrel {\rho _0}{\curvearrowleft }S$ is parameter rigid, then the zeroth and first cohomology of the orbit foliation of $\rho _0$ with certain coefficients must vanish. This is a partial converse to the results in the author’s [Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157–191], where we saw sufficient conditions for parameter rigidity in terms of vanishing of the first cohomology with various coefficients.


1976 ◽  
Vol 64 ◽  
pp. 17-29 ◽  
Author(s):  
Kenneth D. Johnson

Let G be a noncompact linear semisimple Lie group. Fix G = KAN an Iwasawa decomposition of G. That is, K is a maximal compact subgroup of G, A is a vector subgroup with AdA consisting of semisimple transformations and A normalizes N, a simply connected nilpotent subgroup of G.


Sign in / Sign up

Export Citation Format

Share Document