iwasawa decomposition
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 9 (1) ◽  
pp. 119-148
Author(s):  
Thomas Ernst

Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples S U q ( 1 , 1 ) S O q ( 2 ) {{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and S O q ( 3 ) S O q ( 2 ) {{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).


2020 ◽  
pp. 1-37
Author(s):  
HIROKAZU MARUHASHI

Abstract Let $M\stackrel {\rho _0}{\curvearrowleft }S$ be a $C^\infty $ locally free action of a connected simply connected solvable Lie group S on a closed manifold M. Roughly speaking, $\rho _0$ is parameter rigid if any $C^\infty $ locally free action of S on M having the same orbits as $\rho _0$ is $C^\infty $ conjugate to $\rho _0$ . In this paper we prove two types of result on parameter rigidity. First let G be a connected semisimple Lie group with finite center of real rank at least $2$ without compact factors nor simple factors locally isomorphic to $\mathop {\mathrm {SO}}\nolimits _0(n,1)(n\,{\geq}\, 2)$ or $\mathop {\mathrm {SU}}\nolimits (n,1)(n\geq 2)$ , and let $\Gamma $ be an irreducible cocompact lattice in G. Let $G=KAN$ be an Iwasawa decomposition. We prove that the action $\Gamma \backslash G\curvearrowleft AN$ by right multiplication is parameter rigid. One of the three main ingredients of the proof is the rigidity theorems of Pansu, and Kleiner and Leeb on the quasi-isometries of Riemannian symmetric spaces of non-compact type. Secondly we show that if $M\stackrel {\rho _0}{\curvearrowleft }S$ is parameter rigid, then the zeroth and first cohomology of the orbit foliation of $\rho _0$ with certain coefficients must vanish. This is a partial converse to the results in the author’s [Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157–191], where we saw sufficient conditions for parameter rigidity in terms of vanishing of the first cohomology with various coefficients.


2020 ◽  
pp. 1-16
Author(s):  
Ralph John de la Cruz ◽  
Edgar Reyes

2020 ◽  
Vol 378 (1-2) ◽  
pp. 605-611
Author(s):  
Nicolas Monod

2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


Author(s):  
Shengnan Lu ◽  
Xilun Ding ◽  
Gregory S. Chirikjian

This paper is concerned with describing the space of matrices that describe rotations in non-orthogonal coordinates. In scenarios such as in crystallography, conformational analysis of polymers, and in the study of deployable mechanisms and rigid origami, non-orthogonal reference frames are natural. For example, non-orthogonal vectors in the direction of atomic bonds in a molecule, the lattice coordinates of a crystal, or the directions of links in a mechanism are intrinsic. In these cases it is awkward to impose an artificial orthonormal reference frame rather than choosing one that is defined by the geometry of the object being studied. With these applications in mind, we fully characterize the space of all possible non-orthogonal rotations. We find that in the 2D case, this space is a three-dimensional subset of the special linear group, SL(2, R), which is itself a three-dimensional Lie group. In the 3D case we find that the space of nonorthogonal rotations is a seven-dimensional subspace of SL(3, R), which is an eight-dimensional Lie group. In the 2D case we use the Iwasawa decomposition to fully characterize the solution. In the 3D case we parameterize this seven-dimensional space by conjugating elements of the rotation group SO(3) by elements of a discrete family of of four-parameter subgroups of GL(3, R), and using this we derive an inversion formula to extract classical orthogonal rotations from those expressed in non-orthogonal coordinates.


2015 ◽  
Vol 58 (3) ◽  
pp. 632-650 ◽  
Author(s):  
Lior Silberman

AbstractGiven a measureon a locally symmetric spaceobtained as a weak-* limit of probability measures associated with eigenfunctions of the ring of invariant differential operators, we construct a measureon the homogeneous spaceX= Γ\Gthat liftsand is invariant by a connected subgroupA1⊂Aof positive dimension, whereG=NAKis an Iwasawa decomposition. If the functions are, in addition, eigenfunctions of the Hecke operators, thenis also the limit of measures associated with Hecke eigenfunctions on X. This generalizes results of the author with A.Venkatesh in the case where the spectral parameters stay away from the walls of the Weyl chamber.


Sign in / Sign up

Export Citation Format

Share Document