Eigenvalues and chromatic number of a signed graph

Author(s):  
Wei Wang ◽  
Zhidan Yan ◽  
Jianguo Qian
10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


10.37236/4938 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Edita Máčajová ◽  
André Raspaud ◽  
Martin Škoviera

In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph $G$ as a mapping $\phi\colon V(G)\to \mathbb{Z}$ such that for any two adjacent vertices $u$ and $v$ the colour $\phi(u)$ is different from the colour $\sigma(uv)\phi(v)$, where is $\sigma(uv)$ is the sign of the edge $uv$. The substantial part of Zaslavsky's research concentrated on polynomial invariants related to signed graph colourings rather than on the behaviour of colourings of individual signed graphs. We continue the study of signed graph colourings by proposing the definition of a chromatic number for signed graphs which provides a natural extension of the chromatic number of an unsigned graph. We establish the basic properties of this invariant, provide bounds in terms of the chromatic number of the underlying unsigned graph, investigate the chromatic number of signed planar graphs, and prove an extension of the celebrated Brooks' theorem to signed graphs.


Author(s):  
Albert William ◽  
Roy Santiago ◽  
Indra Rajasingh

Author(s):  
K. Rajalakshmi ◽  
M. Venkatachalam ◽  
M. Barani ◽  
D. Dafik

The packing chromatic number $\chi_\rho$ of a graph $G$ is the smallest integer $k$ for which there exists a mapping $\pi$ from $V(G)$ to $\{1,2,...,k\}$ such that any two vertices of color $i$ are at distance at least $i+1$. In this paper, the authors find the packing chromatic number of subdivision vertex join of cycle graph with path graph and subdivision edge join of cycle graph with path graph.


2021 ◽  
Vol 1836 (1) ◽  
pp. 012026
Author(s):  
M Y Rohmatulloh ◽  
Slamin ◽  
A I Kristiana ◽  
Dafik ◽  
R Alfarisi

2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


Sign in / Sign up

Export Citation Format

Share Document