scholarly journals The Chromatic Number of a Signed Graph

10.37236/4938 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Edita Máčajová ◽  
André Raspaud ◽  
Martin Škoviera

In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph $G$ as a mapping $\phi\colon V(G)\to \mathbb{Z}$ such that for any two adjacent vertices $u$ and $v$ the colour $\phi(u)$ is different from the colour $\sigma(uv)\phi(v)$, where is $\sigma(uv)$ is the sign of the edge $uv$. The substantial part of Zaslavsky's research concentrated on polynomial invariants related to signed graph colourings rather than on the behaviour of colourings of individual signed graphs. We continue the study of signed graph colourings by proposing the definition of a chromatic number for signed graphs which provides a natural extension of the chromatic number of an unsigned graph. We establish the basic properties of this invariant, provide bounds in terms of the chromatic number of the underlying unsigned graph, investigate the chromatic number of signed planar graphs, and prove an extension of the celebrated Brooks' theorem to signed graphs.

10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


2011 ◽  
Vol Vol. 13 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Min Chen ◽  
André Raspaud ◽  
Weifan Wang

Graphs and Algorithms International audience A proper vertex coloring of a graphGis called a star-coloring if there is no path on four vertices assigned to two colors. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) epsilon L(v). If G is L-star-colorable for any list assignment L with vertical bar L(v)vertical bar \textgreater= k for all v epsilon V(G), then G is called k-star-choosable. The star list chromatic number of G, denoted by X-s(l)(G), is the smallest integer k such that G is k-star-choosable. In this article, we prove that every graph G with maximum average degree less than 3 is 8-star-choosable. This extends a result that planar graphs of girth at least 6 are 8-star-choosable [A. Kundgen, C. Timmons, Star coloring planar graphs from small lists, J. Graph Theory, 63(4): 324-337, 2010].


10.37236/8478 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Clément Charpentier ◽  
Reza Naserasr ◽  
Éric Sopena

The notion of homomorphism of signed graphs, introduced quite recently, provides better interplay with the notion of minor and is thus of high importance in graph coloring. A newer, but equivalent, definition of homomorphisms of signed graphs, proposed jointly by the second and third authors of this paper and Thomas Zaslavsky, leads to a basic no-homomorphism lemma. According to this definition, a signed graph $(G, \sigma)$ admits a homomorphism to a signed graph $(H, \pi)$ if there is a mapping $\phi$ from the vertices and edges of $G$ to the vertices and edges of $H$ (respectively) which preserves adjacencies, incidences, and signs of closed walks (i.e., the product of the sign of their edges).  For $ij=00, 01, 10, 11$, let $g_{ij}(G,\sigma)$ be the length of a shortest nontrivial closed walk of $(G, \sigma)$ which is, positive and of even length for $ij=00$, positive and of odd length for $ij=01$, negative and of even length for $ij=10$, negative and of odd length for $ij=11$. For each $ij$, if there is no nontrivial closed walk of the corresponding type, we let $g_{ij}(G, \sigma)=\infty$. If $G$ is bipartite, then $g_{01}(G,\sigma)=g_{11}(G,\sigma)=\infty$. In this case, $g_{10}(G,\sigma)$ is certainly realized by a cycle of $G$, and it will be referred to as the \emph{unbalanced-girth} of $(G,\sigma)$. It then follows that if $(G,\sigma)$ admits a homomorphism to $(H, \pi)$, then $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for $ij \in \{00, 01,10,11\}$. Studying the restriction of homomorphisms of signed graphs on sparse families, in this paper we first prove that for any given signed graph $(H, \pi)$, there exists a positive value of $\epsilon$ such that, if $G$ is a connected graph of maximum average degree less than $2+\epsilon$, and if $\sigma$ is a signature of $G$ such that $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for all $ij \in \{00, 01,10,11\}$, then $(G, \sigma)$ admits a homomorphism to $(H, \pi)$. For $(H, \pi)$ being the signed graph on $K_4$ with exactly one negative edge, we show that $\epsilon=\frac{4}{7}$ works and that this is the best possible value of $\epsilon$. For $(H, \pi)$ being the negative cycle of length $2g$, denoted $UC_{2g}$, we show that $\epsilon=\frac{1}{2g-1}$ works.  As a bipartite analogue of the Jaeger-Zhang conjecture, Naserasr, Sopena and Rollovà conjectured in [Homomorphisms of signed graphs, {\em J. Graph Theory} 79 (2015)] that every signed bipartite planar graph $(G,\sigma)$ satisfying $g_{ij}(G,\sigma)\geq 4g-2$ admits a homomorphism to $UC_{2g}$. We show that $4g-2$ cannot be strengthened, and, supporting the conjecture, we prove it for planar signed bipartite graphs $(G,\sigma)$ satisfying the weaker condition $g_{ij}(G,\sigma)\geq 8g-2$. In the course of our work, we also provide a duality theorem to decide whether a 2-edge-colored graph admits a homomorphism to a certain class of 2-edge-colored signed graphs or not.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750081
Author(s):  
Sang Youl Lee

In this paper, we introduce a notion of virtual marked graphs and their equivalence and then define polynomial invariants for virtual marked graphs using invariants for virtual links. We also formulate a way how to define the ideal coset invariants for virtual surface-links using the polynomial invariants for virtual marked graphs. Examining this theory with the Kauffman bracket polynomial, we establish a natural extension of the Kauffman bracket polynomial to virtual marked graphs and found the ideal coset invariant for virtual surface-links using the extended Kauffman bracket polynomial.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2012 ◽  
Vol 15 (01) ◽  
pp. 1250001 ◽  
Author(s):  
JIM GATHERAL ◽  
TAI-HO WANG

In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&P500 local volatility function.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


Sign in / Sign up

Export Citation Format

Share Document