Laplacian eigenvalue distribution and graph parameters

2022 ◽  
Vol 632 ◽  
pp. 1-14
Author(s):  
M. Ahanjideh ◽  
S. Akbari ◽  
M.H. Fakharan ◽  
V. Trevisan
Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


2016 ◽  
Vol 53 ◽  
pp. 66-71 ◽  
Author(s):  
Stephen T. Hedetniemi ◽  
David P. Jacobs ◽  
Vilmar Trevisan

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1036
Author(s):  
Abel Cabrera Martínez ◽  
Alejandro Estrada-Moreno ◽  
Juan Alberto Rodríguez-Velázquez

This paper is devoted to the study of the quasi-total strong differential of a graph, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. Given a vertex x∈V(G) of a graph G, the neighbourhood of x is denoted by N(x). The neighbourhood of a set X⊆V(G) is defined to be N(X)=⋃x∈XN(x), while the external neighbourhood of X is defined to be Ne(X)=N(X)∖X. Now, for every set X⊆V(G) and every vertex x∈X, the external private neighbourhood of x with respect to X is defined as the set Pe(x,X)={y∈V(G)∖X:N(y)∩X={x}}. Let Xw={x∈X:Pe(x,X)≠⌀}. The strong differential of X is defined to be ∂s(X)=|Ne(X)|−|Xw|, while the quasi-total strong differential of G is defined to be ∂s*(G)=max{∂s(X):X⊆V(G)andXw⊆N(X)}. We show that the quasi-total strong differential is closely related to several graph parameters, including the domination number, the total domination number, the 2-domination number, the vertex cover number, the semitotal domination number, the strong differential, and the quasi-total Italian domination number. As a consequence of the study, we show that the problem of finding the quasi-total strong differential of a graph is NP-hard.


2015 ◽  
Vol 64 (9) ◽  
pp. 1785-1799 ◽  
Author(s):  
Francesco Belardo ◽  
Paweł Petecki ◽  
Jianfeng Wang

2016 ◽  
Vol 170 (3) ◽  
pp. 352-362 ◽  
Author(s):  
Xu Huang ◽  
Mansi Ghodsi ◽  
Hossein Hassani

2021 ◽  
Vol 10 (1) ◽  
pp. 131-152
Author(s):  
Stephen Drury

Abstract We discuss the question of classifying the connected simple graphs H for which the second largest eigenvalue of the signless Laplacian Q(H) is ≤ 4. We discover that the question is inextricable linked to a knapsack problem with infinitely many allowed weights. We take the first few steps towards the general solution. We prove that this class of graphs is minor closed.


Sign in / Sign up

Export Citation Format

Share Document