Identifying spatially-explicit land use factors associated with forest patch sizes in a forest reserve in Ghana

2021 ◽  
Vol 101 ◽  
pp. 105135
Author(s):  
Joseph Oduro Appiah ◽  
Williams Agyemang-Duah
2020 ◽  
Vol 5 (1) ◽  
pp. 414
Author(s):  
Amsar Yunan

Maps or remote sensing can be interpreted as the process of reading using various sensors where data collected remotely can be analyzed to obtain information about the object, area or phenomenon. In this study, the author develops a flood disaster mapping information system applying overlays with scoring between the parameters. The determinant factors to provide flood hazard levels includes rainfall factors in the dasarian unit, land-use factors and land-use arbitrary factors. Of all these parameters, a scoring process will be carried out by assigning weights and values according to their respective classifications, then an overlay process will be performed using ArcGIS software. The author conducted this study in Nagan Raya Regency since this area experiences flooding annually.  Framing a thematic map of flood-prone areas in Nagan Raya Regency was designed using the flood hazard method. Spatial data that has been presented in the form of thematic maps as parameters are land use maps, landform maps, and dasarian rainfall maps (per 10 daily). The design of thematic maps that are prone to flooding is done by overlapping (overlay process). In contrast, the determination of the classification is done by adding scores to each parameter, with low, medium and high hazard levels. Parameter analysis shows the level of flood vulnerability in Nagan Raya Regency of each district, namely Beutong: high 0.21%, medium 13.68%, low 86.12%. Seunagan District: high 51.17%, medium 48.83%, low 0%. Seunagan Timur District: high 10.07%, medium 46.18%, low 43.75%. Kuala Subdistrict: high 29.66%, medium 68.99%, low 1.35%. Darul Makmur District: high 8.57%, medium 63.37%, low 28.06%. From the overall results of the study, it can be concluded that the danger of flooding in Nagan Raya Regency with a level of vulnerability: high 9.92%, moderate 42.65% and low 47.43%.


Author(s):  
Glory O. Enaruvbe ◽  
Afolabi O. Osewole ◽  
Ozien P. Mamudu ◽  
Jesús Rodrigo‐Comino

2014 ◽  
Vol 11 (16) ◽  
pp. 4429-4442 ◽  
Author(s):  
Y. Yagasaki ◽  
Y. Shirato

Abstract. In order to estimate a country-scale soil organic carbon (SOC) stock change in agricultural lands in Japan, while taking into account the effect of land-use changes, climate, different agricultural activities and the nature of soils, a spatially explicit model simulation system was developed using Rothamsted Carbon Model (RothC) with an integration of spatial and temporal inventories. Simulation was run from 1970 to 2008 with historical inventories. Simulated SOC stock was compared with observations in a nation-wide stationary monitoring program conducted during 1979–1998. Historical land-use change, characterized by a large decline in the area of paddy fields as well as a small but continuous decline in the area of orchards, occurred along with a relatively large increase in upland crop fields, unmanaged grasslands, and settlements (i.e. conversion of agricultural fields due to urbanization or abandoning). Results of the simulation on SOC stock change under varying land-use change indicated that land-use conversion from agricultural fields to settlements or other lands, as well as that from paddy fields to croplands have likely been an increasing source of CO2 emission, due to the reduction of organic carbon input to soils and the enhancement of SOC decomposition through transition of soil environment from anaerobic to aerobic conditions. The area-weighted mean concentrations of the simulated SOC stocks calculated for major soil groups under paddy fields and upland crop fields were comparable to those observed in the monitoring. Whereas in orchards, the simulated SOC stocks were underestimated. As the results of simulation indicated that SOC stock change under managed grasslands and settlements has been likely a major sink and source of CO2 emission at country-scale, respectively, validation of SOC stock change under these land-use types, which could not have been accomplished due to limited availability or a lack of measurement, remains a forthcoming challenge.


Sign in / Sign up

Export Citation Format

Share Document