boosted regression trees
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 60)

H-INDEX

30
(FIVE YEARS 0)

Author(s):  
Andrea Moglia ◽  
Luca Morelli ◽  
Roberto D’Ischia ◽  
Lorenzo Maria Fatucchi ◽  
Valentina Pucci ◽  
...  

Abstract Background Artificial intelligence (AI) has the potential to enhance patient safety in surgery, and all its aspects, including education and training, will derive considerable benefit from AI. In the present study, deep-learning models were used to predict the rates of proficiency acquisition in robot-assisted surgery (RAS), thereby providing surgical programs directors information on the levels of the innate ability of trainees to facilitate the implementation of flexible personalized training. Methods 176 medical students, without prior experience with surgical simulators, were trained to reach proficiency in five tasks on a virtual simulator for RAS. Ensemble deep neural networks (DNN) models were developed and compared with other ensemble AI algorithms, i.e., random forests and gradient boosted regression trees (GBRT). Results DNN models achieved a higher accuracy than random forests and GBRT in predicting time to proficiency, 0.84 vs. 0.70 and 0.77, respectively (Peg board 2), 0.83 vs. 0.79 and 0.78 (Ring walk 2), 0.81 vs 0.81 and 0.80 (Match board 1), 0.79 vs. 0.75 and 0.71 (Ring and rail 2), and 0.87 vs. 0.86 and 0.84 (Thread the rings 2). Ensemble DNN models outperformed random forests and GBRT in predicting number of attempts to proficiency, with an accuracy of 0.87 vs. 0.86 and 0.83, respectively (Peg board 2), 0.89 vs. 0.88 and 0.89 (Ring walk 2), 0.91 vs. 0.89 and 0.89 (Match board 1), 0.89 vs. 0.87 and 0.83 (Ring and rail 2), and 0.96 vs. 0.94 and 0.94 (Thread the rings 2). Conclusions Ensemble DNN models can identify at an early stage the acquisition rates of surgical technical proficiency of trainees and identify those struggling to reach the required expected proficiency level.



2022 ◽  
Vol 16 (1) ◽  
pp. e0010019
Author(s):  
Sabrina L. Li ◽  
André L. Acosta ◽  
Sarah C. Hill ◽  
Oliver J. Brady ◽  
Marco A. B. de Almeida ◽  
...  

Background Yellow fever (YF) is an arboviral disease which is endemic to Brazil due to a sylvatic transmission cycle maintained by infected mosquito vectors, non-human primate (NHP) hosts, and humans. Despite the existence of an effective vaccine, recent sporadic YF epidemics have underscored concerns about sylvatic vector surveillance, as very little is known about their spatial distribution. Here, we model and map the environmental suitability of YF’s main vectors in Brazil, Haemagogus spp. and Sabethes spp., and use human population and NHP data to identify locations prone to transmission and spillover risk. Methodology/Principal findings We compiled a comprehensive set of occurrence records on Hg. janthinomys, Hg. leucocelaenus, and Sabethes spp. from 1991–2019 using primary and secondary data sources. Linking these data with selected environmental and land-cover variables, we adopted a stacked regression ensemble modelling approach (elastic-net regularized GLM, extreme gradient boosted regression trees, and random forest) to predict the environmental suitability of these species across Brazil at a 1x1 km resolution. We show that while suitability for each species varies spatially, high suitability for all species was predicted in the Southeastern region where recent outbreaks have occurred. By integrating data on NHP host reservoirs and human populations, our risk maps further highlight municipalities within the region that are prone to transmission and spillover. Conclusions/Significance Our maps of sylvatic vector suitability can help elucidate potential locations of sylvatic reservoirs and be used as a tool to help mitigate risk of future YF outbreaks and assist in vector surveillance. Furthermore, at-risk regions identified from our work could help disease control and elucidate gaps in vaccination coverage and NHP host surveillance.



Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Lifeng Li ◽  
Zenan Shi ◽  
Hong Liang ◽  
Jie Liu ◽  
Zhiwei Qiao

Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of H2O from N2 and O2 for 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) and 137,953 hypothetical MOFs (hMOFs). Through the univariate analysis of MOF structure-performance relationships, Qst is shown to be a key descriptor. Moreover, three ML algorithms (random forest, gradient boosted regression trees, and neighbor component analysis (NCA)) are applied to hunt for the complicated interrelation between six descriptors and performance. After the optimizing strategy of grid search and five-fold cross-validation is performed, three ML can effectively build the predictive model for CoRE-MOFs, and the accuracy R2 of NCA can reach 0.97. In addition, based on the relative importance of the descriptors by ML, it can be quantitatively concluded that the Qst is dominant in governing the capture of H2O. Besides, the NCA model trained by 6013 CoRE-MOFs can predict the selectivity of hMOFs with a R2 of 0.86, which is more universal than other models. Finally, 10 CoRE-MOFs and 10 hMOFs with high performance are identified. The computational screening and prediction of ML could provide guidance and inspiration for the development of materials for water harvesting in the atmosphere.



2022 ◽  
pp. 245-254
Author(s):  
Soroor Rahmanian ◽  
Soheila Pouyan ◽  
Sahar Karami ◽  
Hamid Reza Pourghasemi


2021 ◽  
Vol 14 (1) ◽  
pp. 158
Author(s):  
Ele Vahtmäe ◽  
Jonne Kotta ◽  
Laura Argus ◽  
Mihkel Kotta ◽  
Ilmar Kotta ◽  
...  

This study investigated the potential to predict primary production in benthic ecosystems using meteorological variables and spectral indices. In situ production experiments were carried out during the vegetation season of 2020, wherein the primary production and spectral reflectance of different communities of submerged aquatic vegetation (SAV) were measured and chlorophyll (Chl a+b) concentration was quantified in the laboratory. The reflectance of SAV was measured both in air and underwater. First, in situ reflectance spectra of each SAV class were used to calculate different spectral indices, and then the indices were correlated with Chl a+b. Indices using red and blue band combinations such as 650/450 and 650/480 nm explained the largest part of variability in Chl a+b for datasets measured in air and underwater. Subsequently, the best-performing indices were used in boosted regression trees (BRT) models, together with meteorological data to predict the community photosynthesis of different SAV classes. The predictive power (R2) of production models were very high, estimated at the range of 0.82-0.87. The variable contributing the most to the model description was SAV class, followed in most cases by the water temperature. Nevertheless, the inclusion of spectral indices significantly improved BRT models, often by over 20%, and surprisingly their contribution mostly exceeded that of photosynthetically active radiation.



Ground Water ◽  
2021 ◽  
Author(s):  
Katherine J. Knierim ◽  
James A. Kingsbury ◽  
Kenneth Belitz ◽  
Paul E. Stackelberg ◽  
Burke J. Minsley ◽  
...  


Author(s):  
Sandra Ceballos-Santos ◽  
Jaime González-Pardo ◽  
David C. Carslaw ◽  
Ana Santurtún ◽  
Miguel Santibáñez ◽  
...  

The global COVID-19 pandemic that began in late December 2019 led to unprecedented lockdowns worldwide, providing a unique opportunity to investigate in detail the impacts of restricted anthropogenic emissions on air quality. A wide range of strategies and approaches exist to achieve this. In this paper, we use the “deweather” R package, based on Boosted Regression Tree (BRT) models, first to remove the influences of meteorology and emission trend patterns from NO, NO2, PM10 and O3 data series, and then to calculate the relative changes in air pollutant levels in 2020 with respect to the previous seven years (2013–2019). Data from a northern Spanish region, Cantabria, with all types of monitoring stations (traffic, urban background, industrial and rural) were used, dividing the calendar year into eight periods according to the intensity of government restrictions. The results showed mean reductions in the lockdown period above −50% for NOx, around −10% for PM10 and below −5% for O3. Small differences were found between the relative changes obtained from normalised data with respect to those from observations. These results highlight the importance of developing an integrated policy to reduce anthropogenic emissions and the need to move towards sustainable mobility to ensure safer air quality levels, as pre-existing concentrations in some cases exceed the safe threshold.



2021 ◽  
Vol 8 ◽  
Author(s):  
Giorgia Cecino ◽  
Roozbeh Valavi ◽  
Eric A. Treml

Species distribution models (SDMs) are commonly used in ecology to predict species occurrence probability and how species are geographically distributed. Here, we propose innovative predictive factors to efficiently integrate information on connectivity into SDMs, a key element of population dynamics strongly influencing how species are distributed across seascapes. We also quantify the influence of species-specific connectivity estimates (i.e., larval dispersal vs. adult movement) on the marine-based SDMs outcomes. For illustration, seascape connectivity was modeled for two common, yet contrasting, marine species occurring in southeast Australian waters, the purple sea urchin, Heliocidaris erythrogramma, and the Australasian snapper, Chrysophrys auratus. Our models illustrate how different species-specific larval dispersal and adult movement can be efficiently accommodated. We used network-based centrality metrics to compute patch-level importance values and include these metrics in the group of predictors of correlative SDMs. We employed boosted regression trees (BRT) to fit our models, calculating the predictive performance, comparing spatial predictions and evaluating the relative influence of connectivity-based metrics among other predictors. Network-based metrics provide a flexible tool to quantify seascape connectivity that can be efficiently incorporated into SDMs. Connectivity across larval and adult stages was found to contribute to SDMs predictions and model performance was not negatively influenced from including these connectivity measures. Degree centrality, quantifying incoming and outgoing connections with habitat patches, was the most influential centrality metric. Pairwise interactions between predictors revealed that the species were predominantly found around hubs of connectivity and in warm, high-oxygenated, shallow waters. Additional research is needed to quantify the complex role that habitat network structure and temporal dynamics may have on SDM spatial predictions and explanatory power.



2021 ◽  
Vol 78 (4) ◽  
Author(s):  
Daniel Moreno-Fernández ◽  
Isabel Cañellas ◽  
Iciar Alberdi

Abstract • Key message The shrub species richness in Spanish forests is mainly linked to climatic variables and the importance of the groups of variables scarcely differs among forest types. Forest surrounding the Mediterranean Basin exhibit the highest levels of shrub richness. • Context Shrub species account for a high proportion of the plant diversity in Spanish forests and are a determinant factor in forest dynamics and ecosystem functionality. • Aims To investigate the relative importance of climatic, forest stand features, soil and topographic variables in explaining shrub richness in Spanish forests and if the relative importance of these four groups of variables reflects variations among forest types. • Methods We used the Spanish National Forest Inventory and a boosted regression trees approach to identify which climatic, soil, stand and topographic variables (N = 19 variables) are related to the richness of shrub species in Spanish woodlands. • Results The shrub species richness is mainly related to climatic variables followed by soil variables whereas stand and topographic variables play a minor role. The importance of the groups of variables scarcely differs among forest types although forests located around the Mediterranean Sea display the highest levels of shrub richness. • Conclusion Shrub richness in Spain is primarily driven by climatic and soil variables, both at country and forest-type scales. Forests surrounding the Mediterranean Basin account for the highest richness of shrub species but are also those most threatened by global change. Therefore, special attention must be paid to the monitoring and assessment of these forest ecosystems.



Sign in / Sign up

Export Citation Format

Share Document