scholarly journals Investigating the transmission risk of infectious disease outbreaks through the Aotearoa Co-incidence Network (ACN): a population-based study

2022 ◽  
Vol 20 ◽  
pp. 100351
Author(s):  
S.M. Turnbull ◽  
M. Hobbs ◽  
L. Gray ◽  
E.P. Harvey ◽  
W.M.L. Scarrold ◽  
...  
2019 ◽  
Vol 147 ◽  
Author(s):  
F. Mboussou ◽  
P. Ndumbi ◽  
R. Ngom ◽  
Z. Kassamali ◽  
O. Ogundiran ◽  
...  

Abstract The WHO African region is characterised by the largest infectious disease burden in the world. We conducted a retrospective descriptive analysis using records of all infectious disease outbreaks formally reported to the WHO in 2018 by Member States of the African region. We analysed the spatio-temporal distribution, the notification delay as well as the morbidity and mortality associated with these outbreaks. In 2018, 96 new disease outbreaks were reported across 36 of the 47 Member States. The most commonly reported disease outbreak was cholera which accounted for 20.8% (n = 20) of all events, followed by measles (n = 11, 11.5%) and Yellow fever (n = 7, 7.3%). About a quarter of the outbreaks (n = 23) were reported following signals detected through media monitoring conducted at the WHO regional office for Africa. The median delay between the disease onset and WHO notification was 16 days (range: 0–184). A total of 107 167 people were directly affected including 1221 deaths (mean case fatality ratio (CFR): 1.14% (95% confidence interval (CI) 1.07%–1.20%)). The highest CFR was observed for diseases targeted for eradication or elimination: 3.45% (95% CI 0.89%–10.45%). The African region remains prone to outbreaks of infectious diseases. It is therefore critical that Member States improve their capacities to rapidly detect, report and respond to public health events.


Author(s):  
Steffen Unkel ◽  
C. Paddy Farrington ◽  
Paul H. Garthwaite ◽  
Chris Robertson ◽  
Nick Andrews

2017 ◽  
Vol 22 (26) ◽  
Author(s):  
Loes Soetens ◽  
Susan Hahné ◽  
Jacco Wallinga

Geographical mapping of infectious diseases is an important tool for detecting and characterising outbreaks. Two common mapping methods, dot maps and incidence maps, have important shortcomings. The former does not represent population density and can compromise case privacy, and the latter relies on pre-defined administrative boundaries. We propose a method that overcomes these limitations: dot map cartograms. These create a point pattern of cases while reshaping spatial units, such that spatial area becomes proportional to population size. We compared these dot map cartograms with standard dot maps and incidence maps on four criteria, using two example datasets. Dot map cartograms were able to illustrate both incidence and absolute numbers of cases (criterion 1): they revealed potential source locations (Q fever, the Netherlands) and clusters with high incidence (pertussis, Germany). Unlike incidence maps, they were insensitive to choices regarding spatial scale (criterion 2). Dot map cartograms ensured the privacy of cases (criterion 3) by spatial distortion; however, this occurred at the expense of recognition of locations (criterion 4). We demonstrate that dot map cartograms are a valuable method for detection and visualisation of infectious disease outbreaks, which facilitates informed and appropriate actions by public health professionals, to investigate and control outbreaks.


2007 ◽  
Vol 13 (10) ◽  
pp. 1548-1555 ◽  
Author(s):  
Gérard Krause ◽  
Doris Altmann ◽  
Daniel Faensen ◽  
Klaudia Porten ◽  
Justus Benzler ◽  
...  

2021 ◽  
Vol 20 (05) ◽  
pp. A08
Author(s):  
Jagadish Thaker ◽  
Brian Floyd

Scientists highlight that actions that address environmental protection and climate change can also help with reducing infectious disease threats. Results using data from a national sample survey in New Zealand indicate that perceptions of co-benefits of actions to address environmental protection that also protect against infectious disease outbreaks such as the coronavirus is associated with policy support and political engagement. This association was partly mediated through perceived collective efficacy. Local councils with higher level of community collective efficacy were more likely to declare climate emergency. Communication about potential co-benefits is likely to shape public engagement and enact policy change.


Sign in / Sign up

Export Citation Format

Share Document