Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread

LWT ◽  
2018 ◽  
Vol 87 ◽  
pp. 368-378 ◽  
Author(s):  
Els Debonne ◽  
Filip Van Bockstaele ◽  
Ingrid De Leyn ◽  
Frank Devlieghere ◽  
Mia Eeckhout
2020 ◽  
Vol 11 (2) ◽  
pp. 182-188 ◽  
Author(s):  
Hanane Senouci ◽  
Nassira G. Benyelles ◽  
Mohammed EA Dib ◽  
Jean Costa ◽  
Alain Muselli

Background: Ammoides verticillata Briq is an aromatic and medicinal herb that has been widely used in folk medicine for treatment of several types of pathologies such as respiratory problems, colds, fever, headache, gastric disorders and renal infections. Objective: Essential oils have been subjected of numerous works for their antimicrobial and insecticidal properties which have been valued by hundreds of publications and patents. The main objective of this work was to evaluate the chemical composition, and the in vitro and in vivo antifungal, and insecticidal properties of essential oil of Ammoides verticillata. Methods: In this work, the air-dried aerial parts of Ammoides verticillata were hydrodistilled in a Clevenger-type apparatus. The essential oil isolated was analyzed using gas chromatography (GC) and mass spectrometry (GC/MS). The in vitro antifungal activity of the essential oil was investigated against four plant fungi using radial growth technique. The effect of the essential oil on disease development of olive caused by Penicillium crustosum and Aspergillus niger in the in vivo conditions. The fumigation test of the essential oil was evaluated against L3 stages, pupas and adults of Bactrocera oleae known as the olive fly. Results: The essential oil of A. verticillata was characterized mainly by carvacrol (44.3%), limonene (19.3%) and p-cymene (19.2%). The result of in vitro antifungal activity of essential oil showed an interesting antifungal inhibition against Alternaria alternata and Fusarium solani strains with percentage inhibition of 89%. Furthermore, oil of A. verticillata has demonstrated promising in vivo antifungal activity to control infections of olives caused by Aspergillus niger and Penicillium crustosum. In addition, the essential oil exhibited fumigation toxicity against Bactrocera oleae with mortality percentage of 100% at 2 μL/L air. Conclusion: The results showed that essential oil of A. verticillata has interesting biological activities, which suggests that oil have the potential to be used as biocide to protect olives of pathogenic fungi and pests.


2008 ◽  
Vol 3 (9) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Mehrdad Iranshahi ◽  
Abdolmajid Fata ◽  
Bahareh Emami ◽  
Bibi Mohadeseh Jalalzadeh Shahri ◽  
Bibi Sedigheh Fazly Bazzaz

The increase in dermatophytoses and the fact that some patients do not respond well to therapy make it necessary to find new antifungal agents. As part of our ongoing studies on medicinal plants from Iran, we studied antidermatophytic activities of Ferula latisecta essential oil, which had shown considerable antifungal activity in preliminary antimicrobial screening. Antifungal activity was evaluated by determination of MIC values using the agar dilution method on type strains of Candida albicans and dermatophytes. The composition of the oil was characterized by GC and GC/MS analyses. The essential oil was rich in polysulfides (75.2%) and exhibited good activity against Trichophyton rubrum and T. verrucosom for about three weeks, with a MIC value 96 μg/mL. The oil showed antifungal activity, especially against dermatophytes, and the activity is probably related to the sulfur-containing components of the oil. This study has identified that the polysulfides-rich essential oil of Ferula latisecta fruits has activity against a range of human pathogenic dermatophytes, justifying future clinical trials to validate its use as a therapeutic alternative for dermatophytosis.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
E Houël ◽  
A Rodrigues ◽  
A Jahn-Oyac ◽  
JM Bessière ◽  
V Eparvier ◽  
...  

2008 ◽  
Vol 1 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Koffi Koba ◽  
P W Poutouli ◽  
Christine Raynaud ◽  
Komla Sanda

The aerial parts of Ocimum gratissimum L. (Lamiaceae) harvested in Togo was steam-distilled and investigated for essential oil composition (GC and GC/MS) and in vitro antifungal activities. Thymol (31.79 %), p-cymene (15.57 %) and γ-terpinene (12.34 %) and were the major components of the oil. Other notable components identified in this oil were myrcene (6.94 %) and α-thujene (6.11 %).The in vitro antifungal activity was recorded with the minimum inhibitory concentrations (MICs) ranging from 80 to 150 µl.l-1, 150 to 500 µl.l-1  and from 100 to 150 µl.l-1 respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Likewise, on tested fungi the minimum fungicidal concentration (MFC) varied from 300 µl.l-1 to 500 µl.l-1, 500 to 700 µl.l-1 and from 250 to 300 µl.l-1, respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Keywords: O.gratissimum,  Antifungal, Essential oil; Thymol. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1131 


2018 ◽  
Vol 13 (9) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Daniele Fraternale ◽  
Donata Ricci

The present study reports the results of gas chromatography-mass spectrometry (GC/MS) analyses of the essential oil from flowering aerial parts of Cotinus coggygria Scoop. (Anacardiaceae), as well as its in vitro antifungal activity against nine plant pathogenic fungi. Moreover, the essential oil was evaluated for its antifungal activity using the agar dilution method, and also MICs (minimum inhibitory concentrations) and MFCs (minimum fungicidal concentrations) were determined. The major compounds identified by GC-MS were limonene (49.2%), (Z)-β-ocimene (13.6%), α-pinene (8.8%) and (E)-β-ocimene (5.9%). The oil showed in vitro antifungal activity against some species of the Fusarium genus, Botrytis cinerea, and Alternaria solani. Our study indicates that the oil of C. coggygria could be used as a control agent for plant pathogenic fungi in natural formulations.


LWT ◽  
2016 ◽  
Vol 73 ◽  
pp. 226-232 ◽  
Author(s):  
Gonzalo Ortiz de Elguea-Culebras ◽  
Raúl Sánchez-Vioque ◽  
Omar Santana-Méridas ◽  
David Herraiz-Peñalver ◽  
Manuel Carmona ◽  
...  

2021 ◽  
Vol 28 ◽  
pp. 100452 ◽  
Author(s):  
Maryam Moazeni ◽  
Amirhossein Davari ◽  
Shafigheh Shabanzadeh ◽  
Javad Akhtari ◽  
Majid Saeedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document