Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache Straits, Antarctica: a relation to currents, primary production, and sea floor relief

2004 ◽  
Vol 209 (1-4) ◽  
pp. 265-277 ◽  
Author(s):  
E. Isla ◽  
P. Masqué ◽  
A. Palanques ◽  
J. Guillén ◽  
P. Puig ◽  
...  
Keyword(s):  
2016 ◽  
Vol 9 (4) ◽  
pp. 1455-1476 ◽  
Author(s):  
Tinna Jokulsdottir ◽  
David Archer

Abstract. We present a new mechanistic model, stochastic, Lagrangian aggregate model of sinking particles (SLAMS) for the biological pump in the ocean, which tracks the evolution of individual particles as they aggregate, disaggregate, sink, and are altered by chemical and biological processes. SLAMS considers the impacts of ballasting by mineral phases, binding of aggregates by transparent exopolymer particles (TEP), zooplankton grazing and the fractal geometry (porosity) of the aggregates. Parameterizations for age-dependent organic carbon (orgC) degradation kinetics, and disaggregation driven by zooplankton grazing and TEP degradation, are motivated by observed particle fluxes and size spectra throughout the water column. The model is able to explain observed variations in orgC export efficiency and rain ratio from the euphotic zone and to the sea floor as driven by sea surface temperature and the primary production rate and seasonality of primary production. The model provides a new mechanistic framework with which to predict future changes on the flux attenuation of orgC in response to climate change forcing.


BioScience ◽  
1979 ◽  
Vol 29 (10) ◽  
pp. 592-598 ◽  
Author(s):  
Holger W. Jannasch ◽  
Carl O. Wirsen

1985 ◽  
Vol 225 (1240) ◽  
pp. 277-297 ◽  

Circulation of seawater through the upper few kilometres of oceanic crust at tectonic spreading zones results in a transformation of geothermal into chemical energy. Reduced inorganic species are emitted from warm (under 25 °C) and hot (under 400 °C) vents on the sea floor at depths of 1600 and 3000 m and are used by chemolithotrophic bacteria as terrestrial sources of energy for the primary production of organic carbon from carbon dioxide. Thus, the rich and unique animal populations found in the immediate vicinity of the vents represent ecosystems that are largely or totally independent of solar energy. They subsist by means of a food chain that is based on various microbial processes. In addition to aerobic and anaerobic bacterial chemosynthesis, a new type of symbiosis between yet undescribed chemolithotrophic prokaryotes and certain invertebrates appears to account for the major part of the total primary production at the deep-sea vent sites.


2015 ◽  
Vol 8 (7) ◽  
pp. 5931-5982 ◽  
Author(s):  
T. Jokulsdottir ◽  
D. Archer

Abstract. We present a new mechanistic model, Stochastic Lagrangian Aggregate Model of Sinking particles (SLAMS) for the biological pump in the ocean, which tracks the evolution of individual particles as they aggregate, disaggregate, sink, and are altered by chemical and biological processes. SLAMS considers the impacts of ballasting by mineral phases, binding of aggregates by transparent exopolymer particles (TEP), zooplankton grazing, and the fractal geometry (porosity) of the aggregates. Parameterizations for age-dependent organic carbon (orgC) degradation kinetics, and disaggregation driven by zooplankton grazing and TEP degradation, are motivated by observed particle fluxes and size spectra throughout the water column. The model is able to explain observed variations in orgC export efficiency and rain ratio from the euphotic zone and to the sea floor as driven by sea surface temperature and the primary production rate and seasonality of primary production. The model provides a new mechanistic framework with which to predict future changes on the flux attenuation of orgC in response to climate change forcing.


Author(s):  
J. Ure

The region contains half the area of exotic forest in New Zealand and the major industries dependent thereon. Both are expanding rapidly to meet promising export markets. Local conditions are particularly favourable for this form of primary production and continued expansion is expected.


Author(s):  
Eugen Seibold ◽  
Wolfgang H. Berger
Keyword(s):  

2008 ◽  
Vol 44 (4) ◽  
pp. 35-41 ◽  
Author(s):  
O. A. Sosnovskaya ◽  
P. D. Klochenko ◽  
G. V. Kharchenko

Sign in / Sign up

Export Citation Format

Share Document