Submarine slope morphology as a control on the development of sand-rich turbidite depositional systems: 3D seismic analysis of the Kyrre Fm (Upper Cretaceous), Måløy Slope, offshore Norway

2008 ◽  
Vol 25 (8) ◽  
pp. 663-680 ◽  
Author(s):  
Christopher A.-L. Jackson ◽  
Gillian P. Barber ◽  
Ole J. Martinsen
2005 ◽  
Author(s):  
Gustavo Alberto Correia ◽  
Jorge Rui Corrêa de Menezes ◽  
Gilmar Vital Bueno ◽  
Edmundo Julio Jung Marques

2007 ◽  
Vol 197 (1-2) ◽  
pp. 79-98 ◽  
Author(s):  
Arnout Colpaert ◽  
Neil Pickard ◽  
Jürgen Mienert ◽  
Leif Bjørnar Henriksen ◽  
Bjarne Rafaelsen ◽  
...  

2002 ◽  
Vol 42 (1) ◽  
pp. 131
Author(s):  
T. Nakanishi ◽  
S.C. Lang

In the Cooper-Eromanga Basin, the future of exploration lies in identifying an appropriate exploration portfolio consisting of stratigraphic traps in structurally low or flank areas. A variety of stratigraphic trap prospects in the Moorari and Pondrinie 3D seismic survey areas are identified in the Patchawarra, Epsilon, Toolachee and Poolowanna formations. To identify the stratigraphic traps, an integration of sequence stratigraphic concepts applied to non-marine basins and advanced 3D seismic data visualisation was employed. This paper focusses on estimating the chance of geologic success and the probabilistic reserves size for each prospect within its sequence stratigraphic context (lowstand, transgressive or highstand systems tracts). The geologic chance factors for an effective stratigraphic trap include reservoir, top seal, lateral seal and bottom seal within each depositional systems tract, the seal effectiveness of the adjacent depositional systems tracts and the appropriate spatial arrangement of these factors. The confidence values for the existence of geologic chance factors were estimated according to the distributions of the possible reservoir and seal rocks within each genetic-stratigraphic interval and the chance of geologic success of each prospect was calculated. For probabilistic reserves estimation, geologically reasonable ranges were estimated for each parameter employing Monte Carlo simulation to calculate the reserves distribution. When a series of possible exploration portfolios, including single or multiple prospects from the prospect inventory are plotted in terms of the chance of geologic success vs. the mean value of the reserves estimate, an efficient exploration frontier emerges. The portfolio candidates on the efficient exploration frontier were assessed with regard to chance of economic success and expected net present value (ENPV) using a simple cash flow model. The results indicate that appropriate portfolios include multiple prospect exploration especially with lowstand systems tract plays using single or multiple exploration wells. The portfolio construction approach for stratigraphic trap exploration should ultimately be made consistent with conventional play types, to enable an assessment of all exploration opportunities.


2017 ◽  
Vol 5 (3) ◽  
pp. SK65-SK81 ◽  
Author(s):  
Sigurd Kjoberg ◽  
Tobias Schmiedel ◽  
Sverre Planke ◽  
Henrik H. Svensen ◽  
John M. Millett ◽  
...  

The mid-Norwegian margin is regarded as an example of a volcanic-rifted margin formed prior to and during the Paleogene breakup of the northeast Atlantic. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava and lava delta sequences, intrusive sills and dikes, and hydrothermal vent complexes. We have developed a detailed 3D seismic analysis of fluid- and gas-induced hydrothermal vent complexes in a [Formula: see text] area in the Møre Basin, offshore Norway. We find that formation of hydrothermal vent complexes is accommodated by deformation of the host rock when sills are emplaced. Fluids are generated by metamorphic reactions and pore-fluid expansion around sills and are focused around sill tips due to buoyancy. Hydrothermal vent complexes are associated with doming of the overlying strata, leading to the formation of draping mounds above the vent contemporary surface. The morphological characteristics of the upper part and the underlying feeder structure (conduit zone) are imaged and studied in 3D seismic data. Well data indicate that the complexes formed during the early Eocene, linking their formation to the time of the Paleocene-Eocene thermal maximum at c. 56 Ma. The well data further suggest that the hydrothermal vent complexes were active for a considerable time period, corresponding to a c. 100 m thick transition zone unit with primary Apectodinium augustum and redeposited very mature Cretaceous and Jurassic palynomorphs. The newly derived understanding of age, structure, and formation of hydrothermal vent complexes in the Møre Basin contributes to the general understanding of the igneous plumbing system in volcanic basins and their implications for the paleoclimate and petroleum systems.


Sign in / Sign up

Export Citation Format

Share Document