3D seismic analysis of an Upper Palaeozoic carbonate succession of the Eastern Finnmark Platform area, Norwegian Barents Sea

2007 ◽  
Vol 197 (1-2) ◽  
pp. 79-98 ◽  
Author(s):  
Arnout Colpaert ◽  
Neil Pickard ◽  
Jürgen Mienert ◽  
Leif Bjørnar Henriksen ◽  
Bjarne Rafaelsen ◽  
...  
2017 ◽  
Vol 30 (4) ◽  
pp. 587-612 ◽  
Author(s):  
Dora Marín ◽  
Alejandro Escalona ◽  
Sten-Andreas Grundvåg ◽  
Snorre Olaussen ◽  
Sara Sandvik ◽  
...  

Geomorphology ◽  
2019 ◽  
Vol 332 ◽  
pp. 33-50 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Nina Lebedeva-Ivanova ◽  
Emilia D. Piasecka ◽  
Karin Andreassen

2017 ◽  
Vol 5 (3) ◽  
pp. SK65-SK81 ◽  
Author(s):  
Sigurd Kjoberg ◽  
Tobias Schmiedel ◽  
Sverre Planke ◽  
Henrik H. Svensen ◽  
John M. Millett ◽  
...  

The mid-Norwegian margin is regarded as an example of a volcanic-rifted margin formed prior to and during the Paleogene breakup of the northeast Atlantic. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava and lava delta sequences, intrusive sills and dikes, and hydrothermal vent complexes. We have developed a detailed 3D seismic analysis of fluid- and gas-induced hydrothermal vent complexes in a [Formula: see text] area in the Møre Basin, offshore Norway. We find that formation of hydrothermal vent complexes is accommodated by deformation of the host rock when sills are emplaced. Fluids are generated by metamorphic reactions and pore-fluid expansion around sills and are focused around sill tips due to buoyancy. Hydrothermal vent complexes are associated with doming of the overlying strata, leading to the formation of draping mounds above the vent contemporary surface. The morphological characteristics of the upper part and the underlying feeder structure (conduit zone) are imaged and studied in 3D seismic data. Well data indicate that the complexes formed during the early Eocene, linking their formation to the time of the Paleocene-Eocene thermal maximum at c. 56 Ma. The well data further suggest that the hydrothermal vent complexes were active for a considerable time period, corresponding to a c. 100 m thick transition zone unit with primary Apectodinium augustum and redeposited very mature Cretaceous and Jurassic palynomorphs. The newly derived understanding of age, structure, and formation of hydrothermal vent complexes in the Møre Basin contributes to the general understanding of the igneous plumbing system in volcanic basins and their implications for the paleoclimate and petroleum systems.


Sign in / Sign up

Export Citation Format

Share Document