Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China

2017 ◽  
Vol 79 ◽  
pp. 412-425 ◽  
Author(s):  
Xiaoqi Wu ◽  
Quanyou Liu ◽  
Jianhui Zhu ◽  
Kuang Li ◽  
Guangxiang Liu ◽  
...  
2016 ◽  
Vol 34 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Xiaobo Wang ◽  
Jianfa Chen ◽  
Zhisheng Li ◽  
Jian Li ◽  
Dongliang Wang ◽  
...  

2022 ◽  
Author(s):  
Dong Wang ◽  
Yifan Dong ◽  
Shengfang Yang ◽  
Joel Rignol ◽  
Qiang Wang ◽  
...  

Abstract Unlike many unconventional resources that demonstrate a high level of heterogeneity, conventional tight gas formations often perform consistently according to reservoir quality and the applied completion technology. Technical review over a long period may reveal the proper correlation between reservoir quality, completion technology, and well performance. For many parts of the world where conventional tight gas resources still dominate, the learnings from a review can be adapted to improve the performance of reservoirs with similar features. South Sulige Operating Company (SSOC), a joint venture between PetroChina and Total, has been operating in the Ordos basin for tight gas since 2011. The reservoir is known to have low porosity, low permeability, and low reservoir pressure, and requires multistage completion and fracturing to achieve economic production. Over the last 8 years, there has been a clear technical evolution in South Sulige field, as a better understanding of the reservoir, improvement of the completion deployment, optimized fracturing design, and upgraded flowback strategy have led to the continuous improvement of results in this field. Pad drilling of deviated boreholes, multistage completions with sliding sleeve systems, hybrid gel-fracturing, and immediate flowback practices, gradually proved to be the most effective way to deliver the reservoir's potential. Using the absolute open-flow (AOF) during testing phase for comparative assessment from South Sulige field, we can see that in 2012 this number was 126 thousand std m3/d in 2012, and by 2018 this number had increased to 304 thousand std m3/d, representing a 143% incremental increase. Thus, technical evolution has been proved to bring production improvement over time. Currently, South Sulige field not only outperforms offset blocks but also remains the top performer among the fields in the Ordos basin. The drilling and completion practices from SSOC may be well suited to similar reservoirs and fields in the future.


2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


Sign in / Sign up

Export Citation Format

Share Document