Impact of sequence stratigraphy, depositional facies, diagenesis and CO2 charge on reservoir quality of the lower cretaceous Quantou Formation, Southern Songliao Basin, China

2018 ◽  
Vol 93 ◽  
pp. 497-519
Author(s):  
Zheng Cao ◽  
Chengyan Lin ◽  
Chunmei Dong ◽  
Lihua Ren ◽  
Shuo Han ◽  
...  
2015 ◽  
Vol 330 ◽  
pp. 90-107 ◽  
Author(s):  
Kelai Xi ◽  
Yingchang Cao ◽  
Jens Jahren ◽  
Rukai Zhu ◽  
Knut Bjørlykke ◽  
...  

2021 ◽  
Vol 127 ◽  
pp. 104980
Author(s):  
Hui Rong ◽  
Yangquan Jiao ◽  
Liqun Wu ◽  
Xinfu Zhao ◽  
Minqiang Cao ◽  
...  

1997 ◽  
Vol 37 (1) ◽  
pp. 117 ◽  
Author(s):  
P.W. Baillie ◽  
E.P. Jacobson

The Carnarvon Basin is Australia's leading producer of both liquid hydrocarbons and gas. Most oil production to date has come from the Barrow Sub-basin. The success of the Sub-basin is due to a fortuitous combination of good Mesozoic source rocks which have been generating over a long period of time, Lower Cretaceous reservoir rocks with excellent porosity and permeability, and a thick and effective regional seal.A feature of Barrow Sub-basin fields is that they generally produce far more petroleum than is initially estimated and booked, a result of the excellent reservoir quality of the principal producing reservoirs.Structural traps immediately below the regional seal (the 'top Barrow play') have been the most successful play to date. Analysis of 'new' and 'old' play concepts show that the Sub-basin has potential for significant additional hydrocarbon reserves.


2011 ◽  
Vol 114 (3-4) ◽  
pp. 433-448 ◽  
Author(s):  
O. A. FADIPE ◽  
P. F. CAREY ◽  
A. AKINLUA ◽  
S. A. ADEKOLA

2021 ◽  
Vol 11 (4) ◽  
pp. 1643-1666
Author(s):  
Ahmed M. Elatrash ◽  
Mohammad A. Abdelwahhab ◽  
Hamdalla A. Wanas ◽  
Samir I. El-Naggar ◽  
Hasan M. Elshayeb

AbstractThe quality of a hydrocarbon reservoir is strongly controlled by the depositional and diagenetic facies nature of the given rock. Therefore, building a precise geological/depositional model of the reservoir rock is critical to reducing risks while exploring for petroleum. Ultimate reservoir characterization for constructing an adequate geological model is still challenging due to the in general insufficiency of data; particularly integrating them through combined approaches. In this paper, we integrated seismic geomorphology, sequence stratigraphy, and sedimentology, to efficiently characterize the Upper Miocene, incised-valley fill, Abu Madi Formation at South Mansoura Area (Onshore Nile Delta, Egypt). Abu Madi Formation, in the study area, is a SW-NE trending reservoir fairway consisting of alternative sequences of shales and channel-fill sandstones, of the Messinian age, that were built as a result of the River Nile sediment supply upon the Messinian Salinity Crisis. Hence, it comprises a range of continental to coastal depositional facies. We utilized dataset including seismic data, complete set of well logs, and core samples. We performed seismic attribute analysis, particularly spectral decomposition, over stratal slices to outline the geometry of the incised-valley fill. Moreover, well log analysis was done to distinguish different facies and lithofacies associations, and define their paleo-depositional environments; a preceding further look was given to the well log-based sequence stratigraphic setting as well. Furthermore, mineralogical composition and post-depositional diagenesis were identified performing petrographical analysis of some thin sections adopted from the core samples. A linkage between such approaches, performed in this study, and their impact on reservoir quality determination was aimed to shed light on a successful integrated reservoir characterization, capable of giving a robust insight into the depositional facies, and the associated petroleum potential. The results show that MSC Abu Madi Formation constitutes a third-order depositional sequence of fluvial to estuarine units, infilling the Eonile-canyon, with five sedimentary facies associations; overbank mud, fluvial channel complex, estuarine mud, tidal channels, and tidal bars; trending SW-NE with a Y-shape channel geometry. The fluvial facies association (zone 1 and 3) enriches coarse-grained sandstones, deposited in subaerial setting, with significantly higher reservoir quality, acting as the best reservoir facies of the area. Although the dissolution of detrital components, mainly feldspars, enhanced a secondary porosity, improving reservoir quality of MSC Abu Madi sediments, continental fluvial channel facies represent the main fluid flow conduits, where marine influence is limited.


Sign in / Sign up

Export Citation Format

Share Document