Spatio-temporal distributions of chlorofluorocarbons and methyl iodide in the Changjiang (Yangtze River) estuary and its adjacent marine area

2016 ◽  
Vol 103 (1-2) ◽  
pp. 247-259 ◽  
Author(s):  
Da Yuan ◽  
Gui-Peng Yang ◽  
Zhen He
2010 ◽  
Vol 7 (11) ◽  
pp. 3505-3516 ◽  
Author(s):  
G.-L. Zhang ◽  
J. Zhang ◽  
S.-M. Liu ◽  
J.-L. Ren ◽  
Y.-C. Zhao

Abstract. Dissolved nitrous oxide (N2O) was measured in the waters of the Changjiang (Yangtze River) Estuary and its adjacent marine area during five surveys covering the period of 2002–2006. Dissolved N2O concentrations ranged from 6.04 to 21.3 nM, and indicate great temporal and spatial variations. Distribution of N2O in the Changjiang Estuary was influenced by multiple factors and the key factor varied between cruises. Dissolved riverine N2O was observed monthly at station Xuliujing of the Changjiang, and ranged from 12.4 to 33.3 nM with an average of 19.4 ± 7.3 nM. N2O concentrations in the river waters showed obvious seasonal variations with higher values occurring in both summer and winter. Annual input of N2O from the Changjiang to the estuary was estimated to be 15.0 × 106 mol/yr. N2O emission rates from the sediments of the Changjiang Estuary in spring ranged from −1.88 to 2.02 μmol m−2 d−1, which suggests that sediment can act as either a source or a sink of N2O in the Changjiang Estuary. Average annual sea-to-air N2O fluxes from the studied area were estimated to be 7.7 ± 5.5, 15.1 ± 10.8 and 17.0 ± 12.6 μmol m−2d−1 using LM86, W92 and RC01 relationships, respectively. Hence the Changjiang Estuary and its adjacent marine area are a net source of atmospheric N2O.


2008 ◽  
Vol 91 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Guiling Zhang ◽  
Jing Zhang ◽  
Sumei Liu ◽  
Jingling Ren ◽  
Jie Xu ◽  
...  

2010 ◽  
Vol 7 (3) ◽  
pp. 3125-3151 ◽  
Author(s):  
G.-L. Zhang ◽  
J. Zhang ◽  
S.-M. Liu ◽  
J.-L. Ren ◽  
Y.-C. Zhao

Abstract. Dissolved nitrous oxide (N2O) was measured in the waters of the Changjiang (Yangtze River) Estuary and its adjacent marine area during five surveys covering the period of 2002–2006. Dissolved N2O concentrations ranged from 6.04 to 21.3 nM, and indicate seasonal variations with high values occurring in summer and spring. Dissolved riverine N2O was observed monthly at station Xuliujing of the Changjiang, and ranged from 12.4 to 33.3 nM with an average of 20.8±7.8 nM. The average annual input of N2O from the Changjiang to the estuary and its adjacent area was estimated to be 15.8×106 mol/yr. N2O emission rates from the sediments of the Changjiang Estuary in spring ranged from −1.88 to 2.02 μmol m−2 d−1, which suggest that sediment can act as either a source or a sink of N2O in the Changjiang Estuary. The annual sea to air N2O fluxes from the Changjiang Estuary were estimated to be 6.8±3.7, 13.3±7.2 and 14.9±8.3 μmol m−2 d−1 using LM86, W92 and RC01 relationships, respectively. The annual sea to air N2O fluxes from the adjacent marine area were estimated to be 8.5±7.8, 15.3±13.5 and 17.4&plusmn15.7 μmol m−2 d−1 using LM86, W92 and RC01 relationship, respectively. Hence the Changjiang Estuary and its adjacent marine area is a net source of atmospheric N2O.


Sign in / Sign up

Export Citation Format

Share Document