Ocean wave parameters estimation using backpropagation neural networks

2005 ◽  
Vol 18 (3) ◽  
pp. 301-318 ◽  
Author(s):  
S. Mandal ◽  
Subba Rao ◽  
D.H. Raju
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


1986 ◽  
Vol 11 (2) ◽  
pp. 219-234 ◽  
Author(s):  
L. Wyatt ◽  
J. Venn ◽  
G. Burrows ◽  
A. Ponsford ◽  
M. Moorhead ◽  
...  

Author(s):  
WITOLD PAWLUS ◽  
HAMID REZA KARIMI

In this paper a full-scale commercially available magnetorheological (MR) brake installed in a semi-active suspension (SAS) system is modeled and simulated. Two well-known phenomenological hysteresis models are explored: Bouc–Wen and Dahl ones. In particular, influence of their parameters on the response is evaluated and assessed. The next step is to introduce the artificial neural networks and discuss their application in the field of systems identification. Subsequently, two feedforward neural networks are created and trained to estimate parameters characterizing each of the MR damper models described. The semi-active suspension (SAS) system equipped with a MR brake is described and the detailed procedure for acquisition of the reference data used in the models validation stage is elaborated. The models outputs obtained by simulating them with the values of coefficients as identified by the networks are compared to each other as well as to the reference experimental data. Thanks to that, the comparative analysis between the suggested vibration suppression models and the full-scale MR brake is done and it is concluded which of the discussed models has a better performance. The usability of neural networks in the field of parameters estimation of the mathematical models of the real world phenomena is described as well. The novelty of the presented methodology is the application of artificial intelligence methods to estimate model parameters of a MR brake utilized in a SAS system. The results of this approach have a strong potential to be successfully implemented in the area of model-based control of semi-active vibration suppression systems.


Sign in / Sign up

Export Citation Format

Share Document