scholarly journals Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge

2020 ◽  
Vol 72 ◽  
pp. 102763 ◽  
Author(s):  
Jian Dai ◽  
Bernt Johan Leira ◽  
Torgeir Moan ◽  
Marit Irene Kvittem
2019 ◽  
Vol 88 ◽  
pp. 216-240 ◽  
Author(s):  
Kun Xu ◽  
Yanlin Shao ◽  
Zhen Gao ◽  
Torgeir Moan

Author(s):  
Wenbo Huang ◽  
Torgeir Moan

The paper derived new probabilistic models for still-water loads and the combined still-water and wave load effects of FPSOs. A procedure for determining load combination factors, which is suitable for semi-probabilistic and probabilistic design of FPSOs, is established. The most relevant load combination factors in harsh and benign conditions are derived.


1998 ◽  
Vol 120 (1) ◽  
pp. 20-29 ◽  
Author(s):  
J. R. Krokstad ◽  
C. T. Stansberg ◽  
A. Nestega˚rd ◽  
T. Marthinsen

New results from the most recent work within the Norwegian Joint Industry Project (JIP) “Higher Order Wave Load Effects on Large Volume Structures” are presented. A nonslender theoretical model is validated from experiments for two fixed, vertical cylinders with different diameter/peak wavelength ratios. A combination of complete diffraction first-order simulations, sum and difference frequency second-order simulations, and third-order FNV (Faltinsen, Newman, and Vinje, nonlinear long wave model) is implemented in order to develop a simplified and robust ringing load model for a large range of cylinder diameter/peak wavelength ratios. Results from the full diffraction second-order analysis show a significant reduction of second-order loads compared to pure FNV in the wavelength range relevant for ringing loads. The results show improved correspondence with high-frequency experimental loads compared with the unmodified FNV. Results for different cylinder peak wavelength ratios are presented, including validation against experiments. In addition, a few simplified response simulations are carried out demonstrating significant improvements with the modified FNV model.


Author(s):  
Paulo Mauricio Videiro ◽  
Luis Volnei Sudati Sagrilo

This paper compares two approaches for the estimation of long-term response of wave load effects on offshore structures. These approaches are applied to estimate the extreme value of the cross section interaction ratio of a tubular component of the bracing system of a semisubmersible platform. The tubular component is subjected to axial loads and bending moments due to static loads and wave effects. The iteration ratio in the ultimate limit state is defined by applying design criteria derived from API RP-2A LRFD [6]. The approaches are also applied to estimate the long-term response of a single degree of freedom system due to wave actions. The first approach is based on the proposals of Videiro and Moan [3]. The results of the first approach are compared with a new model of long-term response estimation, based on the up-crossing rate distribution of the response process.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774773 ◽  
Author(s):  
Xiujun Xu ◽  
Liquan Wang ◽  
Zhen Li ◽  
Shaoming Yao ◽  
Xiaoming Fang

The mathematical model of the initial pipeline and cable process is created with regard to the ocean current load and wave load; and the mathematical model is solved by the numerical quasi-Newton method to investigate the effects of the current and wave load on the shape and force of the pipeline and cable during the initial pipe-laying process. On this basis, semi-physical simulation system is built to visualize the initial pipe-laying process. The simulation results are compared with OFFPIPE’s results to verify the mathematical model. The current and wave load effects on the shape and tension of the pipeline and cable are analyzed. This real-time virtual reality system will help engineering project in risk management and prediction as well as staff training, which is of vital significance for minimizing the risk of the actual pipe laying and improving the efficiency of the pipe-laying work.


Sign in / Sign up

Export Citation Format

Share Document