Generation of a transgenic mouse in which Cre recombinase is expressed under control of the type II collagen promoter and doxycycline administration

2006 ◽  
Vol 25 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Judy Grover ◽  
Peter J. Roughley
2019 ◽  
Author(s):  
James E. Dennis ◽  
Taylor Splawn ◽  
Thomas J. Kean

AbstractTissue engineered hyaline cartilage is plagued by poor mechanical properties largely due to inadequate type II collagen expression. Of note, commonly used defined chondrogenic media lack 14 vitamins and minerals, some of which are implicated in chondrogenesis. Type II collagen promoter-driven Gaussia luciferase was transfected into ATDC5 cells to create a chondrogenic cell with a secreted-reporter. The reporter cells were used in an aggregate-based chondrogenic culture model to develop a high-throughput analytic platform. This high-throughput platform was used to assess the effect of vitamins and minerals, alone and in combination with TGFβ1, on type II collagen expression. Significant combinatorial effects between vitamins, minerals and TGFβ1 in terms of type II collagen expression and metabolism were discovered. An ‘optimal’ continual supplement of copper and vitamin K in the presence of TGFβ1 gave a 2.5-fold increase in collagen expression over TGFβ1 supplemented media alone.SummaryCurrent defined chondrogenic culture media lack several vitamins and minerals. Type II collagen is the quintessential marker of articular hyaline cartilage, and is commonly deficient in engineered tissue. A type II collagen promoter driven secreted luciferase construct has been transduced into ATDC5 cells and used to assess vitamin and mineral effects on chondrogenesis in a high-throughput format.


1996 ◽  
Vol 09 (02) ◽  
pp. 60-5 ◽  
Author(s):  
N. Hope ◽  
P. Ghosh ◽  
S. Collier

SummaryThe aim of this study was to determine the effects of intra-articular hyaluronic acid on meniscal healing. Circular defects, 1.0 mm in diameter, were made in the anterior third of the medial meniscus in rabbits. In one joint, 0.4 ml hyaluronic acid (Healon®) was instilled, and in the contralateral (control) joint, 0.4 ml Ringer’s saline. Four rabbits were killed after four, eight and 12 weeks and the menisci examined histologically. By eight weeks most of the lesions had healed by filling with hyaline-like cartilage. Healing was not improved by hyaluronic acid treatment. The repair tissue stained strongly with alcian blue, and the presence of type II collagen, keratan sulphate, and chondroitin sulphate was demonstrated by immunohistochemical localisation. In contrast to the circular defects, longitudinal incisions made in the medial menisci of a further six rabbits did not show any healing after 12 weeks, indicating that the shape of the lesion largely determined the potential for healing.The effect of hyaluronic acid on meniscal healing was tested in a rabbit model. With one millimeter circular lesions in the medial meniscus, healing by filling with hyalinelike cartilage was not significantly affected by the application of hyaluronic acid intra-articularly at the time of surgery, compared to saline controls, as assessed histologically four, eight and 12 weeks after the operation.


2007 ◽  
Vol 27 (4) ◽  
pp. 345-356 ◽  
Author(s):  
Linda K. Myers ◽  
Bo Tang ◽  
Edward F. Rosioniec ◽  
John M. Stuart ◽  
Andrew H. Kang

2021 ◽  
Vol 57 (4) ◽  
pp. 166-180
Author(s):  
Maria-Minodora Marin ◽  
Madalina Georgiana Albu Kaya ◽  
George Mihail Vlasceanu ◽  
Jana Ghitman ◽  
Ionut Cristian Radu ◽  
...  

Type II collagen has been perceived as the indispensable element and plays a crucial role in cartilage tissue engineering. Thus, materials based on type II collagen have drawn farther attention in both academic and research for developing new systems for the cartilage regeneration. The disadvantage of using type II collagen as a biomaterial for tissue repairing is its reduced biomechanical properties. This can be solved by physical, enzymatic or chemical cross-linking processes, which provide biomaterials with the required mechanical properties for medical applications. To enhance type II collagen properties, crosslinked collagen scaffolds with different cross-linking agents were prepared by freeze-drying technique. The present research work studied the synthesis of type II collagen biomaterials with and without crosslinking agents. Scaffolds morphology was observed by MicroCT, showing in all cases an appropriate microstructure for biological applications, and the mechanical studies were performed using compressive tests. DSC showed an increase in denaturation temperature with an increase in cross-linking agent concentration. FTIR suggested that the secondary structure of collagen is not affected after the cross-linking; supplementary, to confirm the characteristic triple-helix conformation of collagen, the CD investigation was performed. The results showed that the physical-chemical properties of type II collagen were improved by cross-linking treatments.


Sign in / Sign up

Export Citation Format

Share Document