Effect of secondary twins on strain hardening behavior of a high manganese austenitic steel at 77 K by quasi in situ EBSD

2021 ◽  
Vol 180 ◽  
pp. 111428
Author(s):  
Pengjie Wang ◽  
Jiakuan Ren ◽  
Qiyuan Chen ◽  
Jun Chen ◽  
Zhenyu Liu
2018 ◽  
Vol 284 ◽  
pp. 1168-1172
Author(s):  
Mikhail A. Filippov ◽  
Elena I. Korzunova ◽  
M.V. Tyumkova

A study of the structure and strain-hardening ability relationship was carried out in this work for wear-resistant steels of two structural classes: high-manganese austenitic steel 110G13L and metastable austenitic chromium-manganese steel 60G9KhL. It is shown that the strain-hardening ability can be estimated using a methodologically simple engineering criterion. The criterion determines the metal tendency to harden by determining the Rockwell hardness at the bottom of the indentation cup of the Brinell press indenter


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5426
Author(s):  
Jun Chen ◽  
Shuang Li ◽  
Jia-Kuan Ren ◽  
Zhen-Yu Liu

The deformation structure and its contribution to strain hardening of a high manganese austenitic steel were investigated after tensile deformation at 298 K, 77 K and 4 K by means of electron backscatter diffraction and transmission electron microscopy, exhibiting a strong dependence of strain hardening and deformation structure on deformation temperature. It was demonstrated that sufficient twinning indeed provides a high and stable strain hardening capacity, leading to a simultaneous increase in strength and ductility at 77 K compared with the tensile deformation at 298 K. Moreover, although the SFE of the steel is ~34.4 mJ/m2 at 4 K, sufficient twinning was not observed, indicating that the mechanical twinning is hard to activate at 4 K. However, numerous planar dislocation arrays and microbands can be observed, and these substructures may be a reason for multi-peak strain hardening behaviors at 4 K. They can also provide certain strain hardening capacity, and a relatively high total elongation of ~48% can be obtained at 4 K. In addition, it was found that the yield strength (YS) and ultimate tensile strength (UTS) linearly increases with the lowering of the deformation temperature from 298 K to 4 K, and the increment in YS and UTS was estimated to be 2.13 and 2.43 MPa per 1 K reduction, respectively.


2012 ◽  
Vol 1373 ◽  
Author(s):  
F. Reyes-Calderón ◽  
I. Mejía ◽  
J.M. Cabrera

ABSTRACTThe present research work analyses the influence of microalloying elements (B, Nb, V and Ti) on the tensile strength and the strain hardening behavior of a high-manganese TWIP steel. The analysis was carried out by means of true stress-true strain curves derived from uniaxial tension tests. The work hardening exponent was determined by using the Hollomon and differential Crussard-Jaoul models. Metallographic characterization was carried out to determine the metallurgical changes associated with n values. The results indicate that the Hollomon analysis results in strain hardening exponent values up to 0.46. On the other hand, the differential Crussard-Jaoul analysis establishes a clear distinction of n value for two stages of plastic deformation which are determined by a sharp slope change in the plot of ln(dσ/dε)-lnε.


2021 ◽  
pp. 160623
Author(s):  
Bo Guan ◽  
Yitao Wang ◽  
Jianbo Li ◽  
Yu Zhang ◽  
Hao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document