deformation temperature
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 116)

H-INDEX

27
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Tao Xu ◽  
Zhiyi Pan ◽  
Bo Gao ◽  
Jiaxi Huang ◽  
Xuefei Chen ◽  
...  

Warm rolling at temperatures ranging from 25 °C to 500 °C was conducted on the dual-phase heterostructured low-carbon steel to investigate the effect of deformation temperature on the structural refinement and mechanical properties. Defying our intuition, the grain size and strength of the rolled steels do not deteriorate with the increase in deformation temperature. Warm rolling at 300 °C produces a much finer lamellar structure and higher strength than steels rolled at both room temperature and elevated temperature. It is supposed that the enhanced interactions between carbon atoms and defects (interfaces and dislocations) at 300 °C promote dislocation accumulation and stabilize the nanostructure, thus helping with producing an extremely finer structure and higher strength than other temperatures.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 7
Author(s):  
Xia-Yu Chi ◽  
Xiao-Min Chen ◽  
Yong-Cheng Lin ◽  
Xian-Zheng Lu

The hot deformation characteristics of a GH4169 superalloy are investigated at the temperature and strain rate ranges of 1193–1313 K and 0.01–1 s−1, respectively, through Gleeble-3500 simulator. The hot deformed microstructures are analyzed by optical microscopy (OM), transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD) technology. The effects of deformation parameters on the features of flow curves and annealing twins are discussed in detail. It is found that the shapes of flow curves are greatly affected by the deformation temperature. Broad peaks appear at low deformation temperatures or high strain rates. In addition, the evolution of annealing twins is significantly sensitive to the deformation degree, temperature, and strain rate. The fraction of annealing twins first decreases and then rises with the added deformation degree. This is because the initial annealing twin characters disappear at the relatively small strains, while the annealing twins rapidly generate with the growth of dynamic recrystallized grains during the subsequent hot deformation. The fraction of annealing twins is relatively high when the deformation temperature is high or the strain rate is low. In addition, the important role of annealing twins on dynamic recrystallization (DRX) behaviors are elucidated. The obvious bulging at initial twin boundaries, and the coherency of annealing twin boundaries with dynamic recrystallized grain boundaries, indicates that annealing twins can motivate the DRX nucleation during the hot deformation.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Keran Liu ◽  
Yuanming Huo ◽  
Tao He ◽  
Cunlong Huo ◽  
Changyuan Jia ◽  
...  

The deformation behavior and microstructure of 25CrMo4 axle steel was systematically investigated by thermal compression deformation. The hot-compression test of a 25CrMo4 axle steel sample was carried out on a Gleeble-3800 thermal mechanical simulation tester. The flow behavior of the alloy was studied at the deformation temperature (900–1200 °C), strain rates (0.01; 0.1; 1.0) s–1 and the maximum deformation of 60 %. The flow curves under different deformation conditions were obtained, and the effects of the deformation temperature and strain rate on the appearance of the flow curves are discussed. The true stress-strain curve obtained by experiment is modified by friction. Based on the corrected experimental data, the activation energy determined by the regression analysis was Q = 311 kJ/mol, and the constitutive model was constructed. The high-temperature flow behavior of the 25CrMo4 axle steel was described by the Zener-Hollomon parameter. The optimum hot-deformation process parameters were determined based on the hot processing maps, followed by the analysis of the microstructure characteristics of the alloys under optimum hot working. The results show that the suitable hot-deformation process parameters of the alloy are as follows: deformation temperature is 1050–1200 °C, and strain rate is 0.01 s–1 to 0.14 s–1.


Author(s):  
Xiao-hui Wang ◽  
Zhen-bao Liu ◽  
Jian-xiong Liang ◽  
Zhi-yong Yang ◽  
Yue Qi

Abstract The metadynamic recrystallization behavior of Cr-Co-Ni-Mo ultrahigh-strength martensitic stainless steel was studied in a double-pass isothermal compression test, and a metadynamic recrystallization kinetics model for softening was established. The results showed that the metadynamic recrystallization softening rate of the steel not only depended on the deformation temperature and strain rate but was also related to the dynamic precipitation and the local shear bands in the steel. When the deformation temperature was below 1050 °C, the dynamically precipitated M6C carbides pinned the grain boundaries and hindered metadynamic recrystallization. When the steel was deformed at a deformation temperature of 1000~1050 °C and a strain rate of 1.0~5.0 s-1, a large number of local shear bands were generated. The local shear bands increased the number of nucleation sites for dynamic recrystallization and enhanced the softening rate of metadynamic recrystallization.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Andrij Milenin ◽  
Mirosław Wróbel ◽  
Piotr Kustra

AbstractPossibilities of improving the workability of the CuZn37 brass thin wire in a diameter of 0.14–0.18 mm produced by the dieless drawing processes were explored. The workability was defined as the maximum final longitudinal strain of the wire up to its fracture, achievable in the dieless drawing process. Two technologies of dieless drawing were developed and their workability was compared. The first one is the classical one-pass process; the second, a multi-pass one. For both developed technologies, it was possible to obtain a good-quality product but more than two times higher workability has been demonstrated for the multi-pass technology. No evident effect of the deformation temperature from the window of technologically accepted parameters on the workability was found but an increase in the temperature significantly increased the roughness of the product surface. For the same deformation temperature, the roughness of the wire obtained from the multi-pass process appeared to be significantly lower than for the one of the classical one-pass technologies.


Author(s):  
A.K. Dorosh ◽  
N.M. Bilko ◽  
D.I. Bilko

The rheological properties of the gel-like material, the monomer of which is a crosslinked and modified 2-propenamide of acrylic acid, were determined by relaxation rheometry methods. The values of its elastic modulus and modulus of losses and complex viscosity depending on: deforming stress and its frequency are determined; relative deformation; temperature in the range (20-100) ° C and the regularities of these dependences are noted. It is established that: 1) the dependence of the modulus of elasticity (G'); modulus of loss (G'') and complex viscosity from: relative deformation; voltage; temperature; frequencies indicate that in the linear scale they change according to nonlinear dependencies, and in the transition to the logarithmic scale contain plateau-like areas; 2) analytical dependences of the above parameters on stress, strain rate and temperature are complex and difficult to establish; 3) in the range (20-80) ° C and relative deformations (10-100)% hydrogel has a virtually unchanged value of the modulus (G ') ten times greater than the modulus (G' '), whichdetermines the uniqueness of its rheological and biophysical properties ;  4) in the region (20-80) ° C hydrogel in terms of modulus of elasticity and tangent of the angle of loss is close to a completely elastic body; 5) when the frequency of the deforming voltage is more than 15.8 Hz and the relative deformation ≥100%, the gel is brittlely deformed; while the modulus of its elasticity decreases abruptly and the modulus of losses increases rapidly with increasing frequency of the deforming stress. 6) the dependence of the elastic-viscosity characteristics of the samples washed and unwashed in saline gel in the temperature range (20-80) ° C differ little and indicate that the equilibrium structure of the hydrogel 2-propenamide acrylic acid belongs to the typical colloidal dispersed structure of gelatinous substances.


Sign in / Sign up

Export Citation Format

Share Document