hardening behavior
Recently Published Documents


TOTAL DOCUMENTS

937
(FIVE YEARS 213)

H-INDEX

55
(FIVE YEARS 10)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 397
Author(s):  
Bin Zhou ◽  
Weiwei Zhang ◽  
Zhongmei Gao ◽  
Guoqiang Luo

As a representative type of superalloy, Inconel 718 is widely employed in aerospace, marine and nuclear industries. The significant work hardening behavior of Inconel 718 can improve the service performance of components; nevertheless, it cause extreme difficulty in machining. This paper aims to investigate the influence of chamfered edge parameters on work hardening in orthogonal cutting of Inconel 718 based on a novel hybrid method, which integrates Coupled Eulerian-Lagrangian (CEL) method and grain-size-based functions considering the influence of grain size on microhardness. Orthogonal cutting experiments and nanoindentation tests are conducted to validate the effectiveness of the proposed method. The predicted results are highly consistent with the experimental results. The depth of work hardening layer increases with increasing chamfer angle and chamfer width, also with increasing feed rate (the uncut chip thickness). However, the maximum microhardness on the machined surface does not exhibit a significant difference. The proposed method can provide theoretical guidance for the optimization of cutting parameters and improvement of the work hardening.


Author(s):  
YQ Hu ◽  
S Zhang ◽  
P Huang ◽  
F Wang

Graphene and nanotwins are two effective reinforced microstructural features to achieve improved mechanical properties of metallic composites, while the two features are generally applied separately. In this study, graphene/nano-twinned Cu nanocomposites models with different arrangement of the graphene and twin boundaries were designed by using molecular dynamics (MD) simulations, and the dislocation processes and the interactions between dislocation and graphene/twin were simulated and investigated. The simulation results indicated the arrangement of graphene and nanotwin affects the work hardening behaviors in the graphene/nano-twinned Cu composites, i.e., two staged work hardening behavior corresponded to cyclic process of dislocation hindrance-absorption-reemission in the model with relatively small twin spacing and twin-graphene spacing, while the work hardening dominated by dislocation intersection and multiplication occurred in the model with large twin-spacing. The simulation provided herein demonstrated that the special arrangement of graphene and nanotwins led a way to tailoring the mechanical properties of metallic composites with various work hardening behaviors. Graphical abstract Highlights 1. Dislocation reactions between twins and graphene were simulated and analyzed. 2. Twin-graphene distance and the twin distance play key roles in the reaction. 3. The mechanism corresponding to work hardening changes in the limited two distances.


2022 ◽  
Vol 905 ◽  
pp. 56-60
Author(s):  
Ya Ya Zheng ◽  
Tao Long ◽  
Bing Li

The effects of Mg/Si ratio on precipitation behaviour and properties of Al-Mg-Si alloys were studied by using electrochemical test, corrosion test and transmission electron microscope (TEM). The results show that with the increases of Mg/Si ratio from 0.9 to 1.1, the density of the β" decreases, and the mechanical properties decrease. When the ratio of Mg/Si increases from 1.0 to 1.1, the density y of β" does not increase significantly, but the continuous degree of the MgSi phase decreases significantly. The source of cracks originate from MgSi phase, which reduces the mechanical properties. When the Mg/Si ratio is 0.9, the alloy is in an over-Si state, which results in serious intergranular corrosion (IGC).


2022 ◽  
Vol 108 (1) ◽  
pp. 54-63
Author(s):  
Fumitaka Ichikawa ◽  
Masayoshi Sawada ◽  
Yusuke Kohigashi

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Shuguang Qu ◽  
Heli Peng ◽  
Zhubin He ◽  
Kailun Zheng ◽  
Jinghua Zheng

The precise characterisation of hot flow behavior of titanium alloys is of vital importance for practical hot forming processes. To precisely determine the hot flow behavior of titanium alloys under the forming conditions, Gleeble hot tensile tests are usually performed to simulate the forming processes by accurately controlling the deformation temperatures and strain rates under designed conditions. However, there exists a non-uniform temperature distribution during the Gleeble tests, which leads to inaccuracies in the determined hot flow behavior. To overcome such an issue, this paper proposed a new strain-based correction method for Gleeble hot tensile tests, enabling the mitigation of the non-uniform temperature-induced stress-strain curve inaccuracies. The non-uniform temperature zones have been successfully excluded in the calculation of the true strain levels. A series of hot uniaxial tensile tests of TA32 at temperatures, ranging from 750 °C to 900 °C, and strain rates, 0.01/s~1/s, were carried out. The obtained stress-strain correlations for a large gauge zone were characterized using the new correction method, which was further used to evaluate the hardening behavior of titanium alloys. The results have shown that the ductility, strain hardening component (i.e., n), strain rate hardening component (i.e., m) and uniform strain value (i.e., ) are over-estimated, compared to conventional method. Higher strain rates and lower temperature leads to enhanced hardening behavior. This research provides an alternative correction method and may achieve more accurate stress-strain curves for better guidance of the hot forming process for titanium alloys.


2021 ◽  
Vol 557 ◽  
pp. 153270
Author(s):  
Terumitsu Miura ◽  
Katsuhiko Fujii ◽  
Koji Fukuya ◽  
Masahiro Kawakubo

Sign in / Sign up

Export Citation Format

Share Document