Hollow-porous nanospheres of ZnMn2O4 spinel: A high energy density cathode for rechargeable aqueous battery

2021 ◽  
Vol 263 ◽  
pp. 124373
Author(s):  
Atin Pramanik ◽  
Shreyasi Chattopadhyay ◽  
Sandipan Maiti ◽  
Goutam De ◽  
Sourindra Mahanty
2019 ◽  
Vol 7 (29) ◽  
pp. 17613-17625 ◽  
Author(s):  
Alan Meng ◽  
Xiangcheng Yuan ◽  
Tong Shen ◽  
Zhenjiang Li ◽  
Qingyan Jiang ◽  
...  

The Bi2O3/Bi2Se3 nanoflowers and NiCoSe2/Ni0.85Se nanoparticles are acted as negative and positive electrodes for constructing an asymmetric aqueous battery successfully, and the device present high energy density and outstanding cycling stability.


2017 ◽  
Vol 114 (24) ◽  
pp. 6197-6202 ◽  
Author(s):  
Chongyin Yang ◽  
Liumin Suo ◽  
Oleg Borodin ◽  
Fei Wang ◽  
Wei Sun ◽  
...  

Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid–liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid–liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.


2021 ◽  
Author(s):  
Xiao Tang ◽  
Dong Zhou ◽  
Bao Zhang ◽  
Shijian Wang ◽  
Peng Li ◽  
...  

Abstract Non–aqueous rechargeable multivalent metal (Ca, Mg, Al, etc.) batteries are promising for large–scale energy storage due to their low cost. However, their practical applications face formidable challenges owing to low electrochemical reversibility and dendrite growth of multivalent metal anodes, sluggish kinetics of multivalent ion in metal oxide cathodes, and poor electrode compatibility of flammable organic electrolytes. To overcome these intrinsic hurdles, we develop aqueous multivalent ion batteries to replace the prevailing non–aqueous multivalent metal batteries by using wide–window super–concentrated aqueous gel electrolytes, the versatile high–capacity sulfur anodes, and high–voltage metal oxide cathodes. This rationally designed aqueous battery chemistry enables the long–lasting multivalent ion batteries featured with increased high energy density, reversibility and safety. As a demonstration model, a calcium ion−sulfur||metal oxide full cell exhibited a high energy density of 110 Wh kg–1 with outstanding cycling stability. Molecular dynamics modelling and experimental investigations revealed that the side reactions could be significantly restrained through the suppressed water activity and formation of protective inorganic solid electrolyte interphase in the aqueous gel electrolyte. The unique redox chemistry has also been successfully extended to aqueous magnesium ion and aluminum ion−sulfur||metal oxide batteries. This work will boost aqueous multivalent ion batteries for low−cost large–scale energy storage.


2018 ◽  
Vol 6 (32) ◽  
pp. 15762-15770 ◽  
Author(s):  
Xi Cao ◽  
Lulu Wang ◽  
Jitao Chen ◽  
Junrong Zheng

A Mg2+/Na+ hybrid aqueous battery with high energy density is constructed using commercial Mn3O4 as a cathode and NaTi2(PO4)3 as an anode.


1966 ◽  
Author(s):  
S. CHODOSH ◽  
E. KATSOULIS ◽  
M. ROSANSKY

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Sign in / Sign up

Export Citation Format

Share Document