multivalent metal
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Susu Chen ◽  
Dong Zhao ◽  
Long Chen ◽  
Guangrong Liu ◽  
Yan Ding ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 1926-1928
Author(s):  
Daniel Long ◽  
Scott McClary ◽  
Paul Kotula ◽  
Kevin Zavadil ◽  
Katherine Jungjohann

2021 ◽  
Author(s):  
Ghaidaa Alkhayer

Alginate is a natural polymer that can form complexes in the presence of multivalent metal. In this chapter, we summarized the newest alginate metal complexes application in many fields; organic synthesis, environmental and medical application. The main idea was about alginate complexes’ role in the drug delivery system as a chiral excipient to reach the enantioselective release in the case of chiral drugs. We also present a case study about the ketoprofen enantioselective release investigation from alginate mixed beads with two ion metal types.


Author(s):  
Marshall A. Schroeder ◽  
Lin Ma ◽  
Glenn Pastel ◽  
Kang Xu
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1517
Author(s):  
Vo Pham Hoang Huy ◽  
Yong Nam Ahn ◽  
Jaehyun Hur

The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Tang ◽  
Dong Zhou ◽  
Bao Zhang ◽  
Shijian Wang ◽  
Peng Li ◽  
...  

AbstractRechargeable multivalent metal (e.g., Ca, Mg or, Al) batteries are ideal candidates for large–scale electrochemical energy storage due to their intrinsic low cost. However, their practical application is hampered by the low electrochemical reversibility, dendrite growth at the metal anodes, sluggish multivalent–ion kinetics in metal oxide cathodes and, poor electrode compatibility with non–aqueous organic–based electrolytes. To circumvent these issues, here we report various aqueous multivalent–ion batteries comprising of concentrated aqueous gel electrolytes, sulfur–containing anodes and, high-voltage metal oxide cathodes as alternative systems to the non–aqueous multivalent metal batteries. This rationally designed aqueous battery chemistry enables satisfactory specific energy, favorable reversibility and improved safety. As a demonstration model, we report a room–temperature calcium-ion/sulfur| |metal oxide full cell with a specific energy of 110 Wh kg–1 and remarkable cycling stability. Molecular dynamics modeling and experimental investigations reveal that the side reactions could be significantly restrained through the suppressed water activity and formation of a protective inorganic solid electrolyte interphase. The unique redox chemistry of the multivalent–ion system is also demonstrated for aqueous magnesium–ion/sulfur||metal oxide and aluminum–ion/sulfur||metal oxide full cells.


2021 ◽  
pp. 2100608
Author(s):  
Zhenghui Pan ◽  
Ximeng Liu ◽  
Jie Yang ◽  
Xin Li ◽  
Zhaolin Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document