Synthesis and electrochemical characterization of pseudocapacitive α-MoO3 thin film as transparent electrode material in optoelectronic and energy storage devices

2021 ◽  
Vol 264 ◽  
pp. 124468
Author(s):  
Saheed A. Adewinbi ◽  
Bidini A. Taleatu ◽  
Rafiu A. Busari ◽  
Vusani M. Maphiri ◽  
Kabir O. Oyedotun ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2346
Author(s):  
Hem Prakash Karki ◽  
Hyojae Kim ◽  
Jinmu Jung ◽  
Jonghyun Oh

It is necessary to investigate effective energy storage devices that can fulfill the requirements of short-term and long-term durable energy outputs. Here, we report a simple one-pot hydrothermal technique through which to fabricate the MoS2/Te nanocomposite to be used as an effective electrode material for high-performance supercapacitors. Comprehensive characterization of the as-fabricated nanomaterial was performed using FESEM, HRTEM, XRD, FTIR, XPS, etc., as well as electrochemical characterizations. The electrochemical characterization of the as-fabricated nanocomposite electrode material showed a high specific capacitance of 402.53 F g−1 from a galvanostatic charge-discharge (GCD) profile conducted at 1 A g−1 current density. The electrode material also showed significant rate performance with high cyclic stability reaching up to 92.30% under 4000 cycles of galvanostatic charge-discharge profile at a current density of 10 A g−1. The highly encouraging results obtained using this simple synthetic approach demonstrate that the hetero-structured nanocomposite of MoS2/Te electrode material could serve as a promising composite to use in effective supercapacitors or energy storage devices.


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2021 ◽  
Vol 95 (9) ◽  
pp. 1955-1961
Author(s):  
Liping Zhao ◽  
Gang Liu ◽  
Yeming Wang ◽  
Ye Zhao ◽  
Zehong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document