negative electrode material
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 49)

H-INDEX

37
(FIVE YEARS 6)

2021 ◽  
Vol 105 (1) ◽  
pp. 53-60
Author(s):  
Michal Fibek ◽  
Jiri Libich ◽  
Josef Maca ◽  
Antonín Šimek

This article briefly describes experiments which investigate the mutual compatibility of aprotic solvents with higher fire safety and Lithium Titanate Oxide (LTO) as the negative electrode material for lithium-ion batteries. The work follows the current trend of enhancing fire safety by using new kinds of aprotic solvents along with a new generation of electrode materials which fulfil the intended using of lithium-ion batteries for high power applications, e.g. electric vehicle propulsion. In our work, the examiner of using sulfolane electrolyte (SL) and Li4Ti5O12 (LTO) under various ambient temperatures. The influence of electrolyte on the proper operation and stability of negative electrode material was considered. The measurements were performed in the temperature range from 25 °C up to 80 °C with half-cell connection. Our main objective of these experiments was to prove and investigate a proper operation of an aprotic electrolyte with higher fire safety together with LTO negative material under high ambient temperatures.


2021 ◽  
Vol 118 (48) ◽  
pp. e2024969118
Author(s):  
Jeongsik Yun ◽  
Ryota Sagehashi ◽  
Yoshihiko Sato ◽  
Takuya Masuda ◽  
Satoshi Hoshino ◽  
...  

The development of inherently safe energy devices is a key challenge, and aqueous Li-ion batteries draw large attention for this purpose. Due to the narrow electrochemical stable potential window of aqueous electrolytes, the energy density and the selection of negative electrode materials are significantly limited. For achieving durable and high-energy aqueous Li-ion batteries, the development of negative electrode materials exhibiting a large capacity and low potential without triggering decomposition of water is crucial. Herein, a type of a negative electrode material (i.e., LixNb2/7Mo3/7O2) is proposed for high-energy aqueous Li-ion batteries. LixNb2/7Mo3/7O2 delivers a large capacity of ∼170 mA ⋅ h ⋅ g−1 with a low operating potential range of 1.9 to 2.8 versus Li/Li+ in 21 m lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) aqueous electrolyte. A full cell consisting of Li1.05Mn1.95O4/Li9/7Nb2/7Mo3/7O2 presents high energy density of 107 W ⋅ h ⋅ kg−1 as the maximum value in 21 m LiTFSA aqueous electrolyte, and 73% in capacity retention is achieved after 2,000 cycles. Furthermore, hard X-ray photoelectron spectroscopy study reveals that a protective surface layer is formed at the surface of the negative electrode, by which the high-energy and durable aqueous batteries are realized with LixNb2/7Mo3/7O2. This work combines a high capacity with a safe negative electrode material through delivering the Mo-based oxide with unique nanosized and metastable characters.


2021 ◽  
Vol MA2021-02 (5) ◽  
pp. 1874-1874
Author(s):  
Yanlong Zhou ◽  
Nicolas Emery ◽  
Sylvain Franger ◽  
Jean-Pierre Pereira-Ramos ◽  
Olivier Nguyen ◽  
...  

Author(s):  
Nikita D. Luchinin ◽  
Dmitry A. Aksyonov ◽  
Anatoly V. Morozov ◽  
Sergey V. Ryazantsev ◽  
Victoria A. Nikitina ◽  
...  

Carbon Trends ◽  
2021 ◽  
pp. 100089
Author(s):  
Elena N. Abramova ◽  
Nazerke Marat ◽  
Dmitry P. Rupasov ◽  
Polina A. Morozova ◽  
Maria A. Kirsanova ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihyun Jang ◽  
Tae Hun Kim ◽  
Ji Heon Ryu

AbstractAs the application of lithium-ion batteries in electric vehicles increases, the demand for improved charging characteristics of batteries is also increasing. Lithium titanium oxide (Li4Ti5O12, LTO) is a negative electrode material with high rate characteristics, but further improvement in rate characteristics is needed for achieving the quick-charging performance required by electric vehicle markets. In this study, the surface of LTO was coated with a titanium nitride (TiN) layer using urea and an autogenic reactor, and electrochemical performance was improved (initial Coulombic efficiency and the rate capability were improved from 95.6 to 4.4% for pristine LTO to 98.5% and 53.3% for urea-assisted TiN-coated LTO, respectively. We developed a process for commercial production of surface coatings using eco-friendly material to further enhance the charging performance of LTO owing to high electronic conductivity of TiN.


Sign in / Sign up

Export Citation Format

Share Document