Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints

2013 ◽  
Vol 45 ◽  
pp. 265-270 ◽  
Author(s):  
H. Khodaverdizadeh ◽  
A. Heidarzadeh ◽  
T. Saeid
Author(s):  
Vahid M Khojastehnezhad ◽  
Hamed H Pourasl ◽  
Reza Vatankhah Barenji

The Al6061/Al2O3–TiB2 surface hybrid composites were produced using friction stir processing. The effect of the tool pin profile was investigated on the microstructure and mechanical properties including hardness and wear resistance. For this purpose, simple cylindrical, threaded cylindrical, taper, square, and triangular pin profiles were used. X-ray diffraction analysis and transmission electron microscopy were used to characterize the used powder. Light and scanning electron microscopes were utilized for the microstructural observations of the processed samples. The results showed that the distribution of Al2O3–TiB2 particles in the specimens produced using square and triangular tool pin profiles was more uniform due to their tool geometry, which results in better stirring of the material and good material flow. Consequently, a greater reduction of particle clustering was observed, and hence the mechanical properties were enhanced. Moreover, the samples produced using square and triangular pin profiles exhibited more grain refinement than the other samples. More uniform structure, less clustering, and finer grains produced by square and triangular pin profiles caused higher hardness and wear resistance of the samples.


2017 ◽  
Vol 62 (3) ◽  
pp. 1819-1825
Author(s):  
V.C. Sinha ◽  
S. Kundu ◽  
S. Chatterjee

AbstractIn the present study, the effect of tool rotational speed on microstructure and mechanical properties of friction stir welded joints between commercially pure copper and 6351 Al alloy was carried out in the range of tool rotational speeds of 300-900 rpm in steps of 150 rpm at 30 mm/minutes travel speed. Up to 450 rpm, the interface of the joints is free from intermetallics and Al4Cu9intermetallic has been observed at the stir zone. However, Al4Cu9intermetallic was observed both at the interface and the stir zone at 600 rpm. At 750 and 900 rpm tool rotational speed, the layers of AlCu, Al2Cu3and Al4Cu9intermetallics were observed at the interface and only Al4Cu9intermetallics has been observed in the stir zone. The maximum ultimate tensile strength of ~207 MPa and yield strength of ~168 MPa along with ~6.2% elongation at fracture of the joint have been obtained when processed at 450 rpm tool rotational speed.


Sign in / Sign up

Export Citation Format

Share Document